Active Filters

  • (-) Empa Authors ≠ Steiger, René
  • (-) Empa Laboratories = 502 Advanced Analytical Technologies
Search Results 1 - 20 of 699

Pages

  • RSS Feed
Select Page
Emission factors of unregulated atmospheric pollutants for passenger cars - task 322 of the EU ARTEMIS project
Aakko, P., Laurikko, J., Weilenmann, M., Mattrel, P., Joumard, R., André, J. M., … Nollet, V. (2006). Emission factors of unregulated atmospheric pollutants for passenger cars - task 322 of the EU ARTEMIS project. R. Joumard (Ed.), Actes INRETS: Vol. 107. (pp. 231-238). Presented at the 2nd conference on environment and transport; 15th conference on transport and air pollution. .
Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry
Abegglen, M., Brem, B. T., Ellenrieder, M., Durdina, L., Rindlisbacher, T., Wang, J., … Sierau, B. (2016). Chemical characterization of freshly emitted particulate matter from aircraft exhaust using single particle mass spectrometry. Atmospheric Environment, 134, 181-197. https://doi.org/10.1016/j.atmosenv.2016.03.051
Effective density and mass–mobility exponents of particulate matter in aircraft turbine exhaust: Dependence on engine thrust and particle size
Abegglen, M., Durdina, L., Brem, B. T., Wang, J., Rindlisbacher, T., Corbin, J. C., … Sierau, B. (2015). Effective density and mass–mobility exponents of particulate matter in aircraft turbine exhaust: Dependence on engine thrust and particle size. Journal of Aerosol Science, 88, 135-147. https://doi.org/10.1016/j.jaerosci.2015.06.003
Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models
Aengenheister, L., Batbajar Dugershaw, B., Manser, P., Wichser, A., Schoenenberger, R., Wick, P., … Buerki-Thurnherr, T. (2019). Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. European Journal of Pharmaceutics and Biopharmaceutics, 142, 488-497. https://doi.org/10.1016/j.ejpb.2019.07.018
Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models
Aengenheister, L., Dietrich, D., Sadeghpour, A., Manser, P., Diener, L., Wichser, A., … Buerki-Thurnherr, T. (2018). Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models. Journal of Nanobiotechnology, 16(1), 79 (16 pp.). https://doi.org/10.1186/s12951-018-0406-6
New high capacity cathode materials for rechargeable Li-ion Batteries: vanadate-borate glasses
Afyon, S., Krumeich, F., Mensing, C., Borgschulte, A., & Nesper, R. (2014). New high capacity cathode materials for rechargeable Li-ion Batteries: vanadate-borate glasses. Scientific Reports, 4, 7113 (7 pp.). https://doi.org/10.1038/srep07113
Spatial and temporal distribution of endotoxins, antibiotic resistance genes and mobile genetic elements in the air of a dairy farm in Germany
Agarwal, V., Yue, Y., Zhang, X., Feng, X., Tao, Y., & Wang, J. (2023). Spatial and temporal distribution of endotoxins, antibiotic resistance genes and mobile genetic elements in the air of a dairy farm in Germany. Environmental Pollution, 336, 122404 (10 pp.). https://doi.org/10.1016/j.envpol.2023.122404
Airborne antibiotic and metal resistance genes - a neglected potential risk at e-waste recycling facilities
Agarwal, V., Meier, B., Schreiner, C., Figi, R., Tao, Y., & Wang, J. (2024). Airborne antibiotic and metal resistance genes - a neglected potential risk at e-waste recycling facilities. Science of the Total Environment, 920, 170991 (12 pp.). https://doi.org/10.1016/j.scitotenv.2024.170991
Release of TiO<SUB>2</SUB> from paints containing pigment-TiO<SUB>2</SUB> or nano-TiO<SUB>2</SUB> by weathering
Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., & Nowack, B. (2013). Release of TiO2 from paints containing pigment-TiO2 or nano-TiO2 by weathering. Environmental Science: Processes and Impacts, 15(12), 2186-2193. https://doi.org/10.1039/C3EM00331K
Characterization of materials released into water from paint containing nano-SiO<SUB>2</SUB>
Al-Kattan, A., Wichser, A., Vonbank, R., Brunner, S., Ulrich, A., Zuin, S., … Nowack, B. (2015). Characterization of materials released into water from paint containing nano-SiO2. Chemosphere, 119, 1314-1321. https://doi.org/10.1016/j.chemosphere.2014.02.005
Behavior of TiO<SUB>2</SUB> released from nano-TiO<SUB>2</SUB>-containing paint and comparison to pristine nano-TiO<SUB>2</SUB>
Al-Kattan, A., Wichser, A., Zuin, S., Arroyo, Y., Golanski, L., Ulrich, A., & Nowack, B. (2014). Behavior of TiO2 released from nano-TiO2-containing paint and comparison to pristine nano-TiO2. Environmental Science and Technology, 48(12), 6710-6718. https://doi.org/10.1021/es5006219
Decoupling of optoelectronic properties from morphological changes in sodium treated kesterite thin film solar cells
Andres, C., Schwarz, T., Haass, S. G., Weiss, T. P., Carron, R., Caballero, R., … Romanyuk, Y. E. (2018). Decoupling of optoelectronic properties from morphological changes in sodium treated kesterite thin film solar cells. Solar Energy, 175, 94-100. https://doi.org/10.1016/j.solener.2018.03.067
X-ray phase-contrast imaging for laser-induced shock waves
Antonelli, L., Barbato, F., Mancelli, D., Trela, J., Zeraouli, G., Boutoux, G., … Batani, D. (2019). X-ray phase-contrast imaging for laser-induced shock waves. Europhysics Letters, 125(3), 35002 (5 pp.). https://doi.org/10.1209/0295-5075/125/35002
3D magnetic patterning in additive manufacturing via site-specific in-situ alloy modification
Arabi-Hashemi, A., Maeder, X., Figi, R., Schreiner, C., Griffiths, S., & Leinenbach, C. (2020). 3D magnetic patterning in additive manufacturing via site-specific in-situ alloy modification. Applied Materials Today, 18, 100512 (9 pp.). https://doi.org/10.1016/j.apmt.2019.100512
He-doped pseudospark as a home-lab XUV source beyond the beamtime bottleneck
Arbelo, Y., Barbato, F., & Bleiner, D. (2017). He-doped pseudospark as a home-lab XUV source beyond the beamtime bottleneck. Plasma Sources Science and Technology, 26, 035005 (10 pp.). https://doi.org/10.1088/1361-6595/aa595d
Induction spectrometry using an ultrafast hollow-cored toroidal-coil (HTC) detector
Arbelo, Y., & Bleiner, D. (2017). Induction spectrometry using an ultrafast hollow-cored toroidal-coil (HTC) detector. Review of Scientific Instruments, 88(2), 024710 (7 pp.). https://doi.org/10.1063/1.4975402
Tabletop extreme ultraviolet time‐of‐flight spectrometry for trace analysis of high ionization energy samples
Arbelo, Y., & Bleiner, D. (2019). Tabletop extreme ultraviolet time‐of‐flight spectrometry for trace analysis of high ionization energy samples. Rapid Communications in Mass Spectrometry, 33(14), 1196-1206. https://doi.org/10.1002/rcm.8463
Characterization and source apportionment of single particles from metalworking activities
Arndt, J., Healy, R. M., Setyan, A., Flament, P., Deboudt, K., Riffault, V., … Wenger, J. C. (2021). Characterization and source apportionment of single particles from metalworking activities. Environmental Pollution, 270, 116078 (12 pp.). https://doi.org/10.1016/j.envpol.2020.116078
Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010
Atkinson, D. B., Pekour, M., Chand, D., Radney, J. G., Kolesar, K. R., Zhang, Q., … Cappa, C. D. (2018). Using spectral methods to obtain particle size information from optical data: applications to measurements from CARES 2010. Atmospheric Chemistry and Physics, 18(8), 5499-5514. https://doi.org/10.5194/acp-18-5499-2018
Effects of rubidium fluoride and potassium fluoride postdeposition treatments on Cu(In,Ga)Se<sub>2</sub> thin films and solar cell performance
Avancini, E., Carron, R., Weiss, T. P., Andres, C., Bürki, M., Schreiner, C., … Tiwari, A. N. (2017). Effects of rubidium fluoride and potassium fluoride postdeposition treatments on Cu(In,Ga)Se2 thin films and solar cell performance. Chemistry of Materials, 29(22), 9695-9704. https://doi.org/10.1021/acs.chemmater.7b03412
 

Pages