Active Filters

  • (-) Empa Authors ≠ Steiger, René
  • (-) Keywords = CIGS
Search Results 1 - 20 of 43
Select Page
Alternative back contact designs for Cu(In,Ga)Se<SUB>2</SUB> solar cells on polyimide foils
Blösch, P., Nishiwaki, S., Jaeger, T., Kranz, L., Pianezzi, F., Chirilă, A., … Tiwari, A. N. (2013). Alternative back contact designs for Cu(In,Ga)Se2 solar cells on polyimide foils. Thin Solid Films, 535, 220-223. https://doi.org/10.1016/j.tsf.2012.11.091
Sodium-doped molybdenum back contact designs for Cu(In,Ga)Se2 solar cells
Blösch, P., Nishiwaki, S., Kranz, L., Fella, C. M., Pianezzi, F., Jäger, T., … Tiwari, A. N. (2014). Sodium-doped molybdenum back contact designs for Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 124, 10-16. https://doi.org/10.1016/j.solmat.2014.01.020
Sodium-Doped molybdenum back contacts for flexible Cu(In,Ga)Se<SUB>2</SUB> solar cells
Blösch, P., Nishiwaki, S., Chirilă, A., Kranz, L., Fella, C., Pianezzi, F., … Tiwari, A. N. (2013). Sodium-Doped molybdenum back contacts for flexible Cu(In,Ga)Se2 solar cells. Thin Solid Films, 535, 214-219. https://doi.org/10.1016/j.tsf.2012.10.080
Optimization of Ti/TiN/Mo back contact properties for Cu(In,Ga)Se<SUB>2</SUB> solar cells on polyimide foils
Blösch, P., Güttler, D., Chirila, A., & Tiwari, A. N. (2011). Optimization of Ti/TiN/Mo back contact properties for Cu(In,Ga)Se2 solar cells on polyimide foils. Thin Solid Films, 519(21), 7453-7457. https://doi.org/10.1016/j.tsf.2010.12.187
Interface formation between CuIn<SUB>1-</SUB><I><SUB>x</SUB></I>Ga<I><SUB>x</SUB></I>Se<SUB>2</SUB> absorber and In<SUB>2</SUB>S<SUB>3</SUB> buffer layer deposited by ultrasonic spray pyrolysis
Buecheler, S., Pianezzi, F., Fella, C., Chirila, A., Decock, K., Burgelman, M., & Tiwari, A. N. (2011). Interface formation between CuIn1-xGaxSe2 absorber and In2S3 buffer layer deposited by ultrasonic spray pyrolysis. Thin Solid Films, 519(21), 7560-7563. https://doi.org/10.1016/j.tsf.2011.01.370
High throughput P2 laser scribing of Cu(In,Ga)Se<SUB>2</SUB> thin-film solar cells
Burn, A., Heger, C., Buecheler, S., Nishiwaki, S., Bremaud, D., Ziltener, R., … Romano, V. (2016). High throughput P2 laser scribing of Cu(In,Ga)Se2 thin-film solar cells. In B. Neuenschwander, S. Roth, C. P. Grigoropoulos, & T. Makimura (Eds.), Proceedings of SPIE: Vol. 9735. Laser applications in microelectronic and optoelectronic manufacturing (LAMOM) XXI (p. 973504 (13 pp.). https://doi.org/10.1117/12.2212496
All fiber laser scribing of Cu(In,Ga)Se<sub>2</sub> thin-film solar modules
Burn, A., Muralt, M., Pilz, S., Romano, V., Witte, R., Frei, B., … Krainer, L. (2013). All fiber laser scribing of Cu(In,Ga)Se2 thin-film solar modules. In C. Emmelmann, M. F. Zaeh, T. Graf, & M. Schmidt (Eds.), Physics procedia: Vol. 41. Lasers in manufacturing (LiM 2013) (pp. 713-722). https://doi.org/10.1016/j.phpro.2013.03.138
Advanced alkali treatments for high‐efficiency Cu(In,Ga)Se&lt;sub&gt;2&lt;/sub&gt; solar cells on flexible substrates
Carron, R., Nishiwaki, S., Feurer, T., Hertwig, R., Avancini, E., Löckinger, J., … Tiwari, A. N. (2019). Advanced alkali treatments for high‐efficiency Cu(In,Ga)Se2 solar cells on flexible substrates. Advanced Energy Materials, 9(24), 1900408 (8 pp.). https://doi.org/10.1002/aenm.201900408
Cu(In,Ga)Se<SUB>2</SUB> solar cell grown on flexible polymer substrate with efficiency exceeding 17%
Chirilǎ, A., Bloesch, P., Seyrling, S., Uhl, A., Buecheler, S., Pianezzi, F., … Tiwari, A. N. (2011). Cu(In,Ga)Se2 solar cell grown on flexible polymer substrate with efficiency exceeding 17%. Progress in Photovoltaics, 19(5), 560-564. https://doi.org/10.1002/pip.1077
Ultrasonically sprayed indium sulfide buffer layers for Cu(In,Ga)(S,Se)<SUB>2</SUB> thin-film solar cells
Corica, D., Buecheler, S., Guettler, D., Chirila, A., Verma, R., Müller, U., … Tiwari, A. N. (2009). Ultrasonically sprayed indium sulfide buffer layers for Cu(In,Ga)(S,Se)2 thin-film solar cells. Thin Solid Films, 517(7), 2312-2315. https://doi.org/10.1016/j.tsf.2008.10.135
Characterisation of ultrasonically sprayed In<SUB>x</SUB>S<SUB>y</SUB> buffer layers for Cu(In,Ga)Se<SUB>2 </SUB>solar cells
Ernits, K., Brémaud, D., Buecheler, S., Hibberd, C. J., Kaelin, M., Khrypunov, G., … Tiwari, A. N. (2007). Characterisation of ultrasonically sprayed InxSy buffer layers for Cu(In,Ga)Se2 solar cells. Thin Solid Films, 515(15), 6051-6054. https://doi.org/10.1016/j.tsf.2006.12.168
Progress in thin film CIGS photovoltaics – research and development, manufacturing, and applications
Feurer, T., Reinhard, P., Avancini, E., Bissig, B., Löckinger, J., Fuchs, P., … Tiwari, A. N. (2017). Progress in thin film CIGS photovoltaics – research and development, manufacturing, and applications. Progress in Photovoltaics, 25(7), 645-667. https://doi.org/10.1002/pip.2811
Single-graded CIGS with narrow bandgap for tandem solar cells
Feurer, T., Bissig, B., Weiss, T. P., Carron, R., Avancini, E., Löckinger, J., … Tiwari, A. N. (2018). Single-graded CIGS with narrow bandgap for tandem solar cells. Science and Technology of Advanced Materials, 19(1), 263-270. https://doi.org/10.1080/14686996.2018.1444317
3D and multimodal X-ray microscopy reveals the impact of voids in CIGS solar cells
Fevola, G., Ossig, C., Verezhak, M., Garrevoet, J., Guthrey, H. L., Seyrich, M., … Stuckelberger, M. E. (2024). 3D and multimodal X-ray microscopy reveals the impact of voids in CIGS solar cells. Advanced Science, 11(2), 2301873 (8 pp.). https://doi.org/10.1002/advs.202301873
Non-vacuum methods for formation of Cu(In, Ga)(Se, S)<SUB>2</SUB> thin film photovoltaic absorbers
Hibberd, C. J., Chassaing, E., Liu, W., Mitzi, D. B., Lincot, D., & Tiwari, A. N. (2010). Non-vacuum methods for formation of Cu(In, Ga)(Se, S)2 thin film photovoltaic absorbers. Progress in Photovoltaics, 18(6), 434-452. https://doi.org/10.1002/pip.914
Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material
Klampaftis, E., Ross, D., Seyrling, S., Tiwari, A. N., & Richards, B. S. (2012). Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material. Solar Energy Materials and Solar Cells, 101, 62-67. https://doi.org/10.1016/j.solmat.2012.02.011
About RC-like contacts in deep level transient spectroscopy and Cu(In,Ga)Se<SUB>2</SUB> solar cells
Lauwaert, J., Callens, L., Khelifi, S., Decock, K., Burgelman, M., Chirila, A., … Vrielinck, H. (2012). About RC-like contacts in deep level transient spectroscopy and Cu(In,Ga)Se2 solar cells. Progress in Photovoltaics, 20(5), 588-594. https://doi.org/10.1002/pip.2166
New sulphide precursors for Zn(O,S) buffer layers in Cu(In,Ga)Se<SUB>2</SUB> solar cells for faster reaction kinetics
Löckinger, J., Nishiwaki, S., Fuchs, P., Buecheler, S., Romanyuk, Y. E., & Tiwari, A. N. (2016). New sulphide precursors for Zn(O,S) buffer layers in Cu(In,Ga)Se2 solar cells for faster reaction kinetics. Journal of Optics, 18(8), 084002 (7 pp.). https://doi.org/10.1088/2040-8978/18/8/084002
ALD-Zn<sub><em>x</em></sub>Ti<sub><em>y</em></sub>O as window layer in Cu(In,Ga)Se<sub>2</sub> solar cells</span>
Löckinger, J., Nishiwaki, S., Andres, C., Erni, R., Rossell, M. D., Romanyuk, Y. E., … Tiwari, A. N. (2018). ALD-ZnxTiyO as window layer in Cu(In,Ga)Se2 solar cells. ACS Applied Materials and Interfaces, 10(50), 43603-43609. https://doi.org/10.1021/acsami.8b14490
TiO<sub>2</sub> as intermediate buffer layer in Cu(In,Ga)Se<sub>2</sub> solar cells
Löckinger, J., Nishiwaki, S., Weiss, T. P., Bissig, B., Romanyuk, Y. E., Buecheler, S., & Tiwari, A. N. (2018). TiO2 as intermediate buffer layer in Cu(In,Ga)Se2 solar cells. Solar Energy Materials and Solar Cells, 174, 397-404. https://doi.org/10.1016/j.solmat.2017.09.030