Active Filters

  • (-) Empa Laboratories ≠ 303 Structural Engineering
  • (-) Empa Authors = Clemens, Frank J.
Search Results 1 - 20 of 213

Pages

  • RSS Feed
Select Page
Influence of porous substrate on copper based oxygen carrier efficiency for chemical-looping combustion
van Garderen, N., Otal, E. H., Aneziris, C. G., Graule, T., & Clemens, F. J. (2014). Influence of porous substrate on copper based oxygen carrier efficiency for chemical-looping combustion. Microporous and Mesoporous Materials, 190, 362-370. https://doi.org/10.1016/j.micromeso.2014.02.017
Comparison methods for microstructure analysis on highly porous extrudates based on diatomite filter aids
van Garderen, N., Graule, T., Aneziris, C. G., & Clemens, F. J. (2013). Comparison methods for microstructure analysis on highly porous extrudates based on diatomite filter aids. Microporous and Mesoporous Materials, 171, 215-222. https://doi.org/10.1016/j.micromeso.2012.12.022
Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material
van Garderen, N., Clemens, F. J., Mezzomo, M., Bergmann, C. P., & Graule, T. (2011). Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material. Applied Clay Science, 52(1-2), 115-121. https://doi.org/10.1016/j.clay.2011.02.008
Investigation of sintering temperature on attrition resistance of highly porous diatomite based material
van Garderen, N., Clemens, F. J., Scharf, D., & Graule, T. (2010). Investigation of sintering temperature on attrition resistance of highly porous diatomite based material. In K. Vafai (Ed.), AIP conference proceedings: Vol. 1254. Porous media and its applications in science, engineering and industry (pp. 260-265). https://doi.org/10.1063/1.3453821
Pore analyses of highly porous diatomite and clay based materials for fluidized bed reactors
van Garderen, N., Clemens, F. J., Kaufmann, J., Urbanek, M., Binkowski, M., Graule, T., & Aneziris, C. G. (2012). Pore analyses of highly porous diatomite and clay based materials for fluidized bed reactors. Microporous and Mesoporous Materials, 151, 255-263. https://doi.org/10.1016/j.micromeso.2011.10.028
Development of copper impregnated porous granulates for chemical-looping combustion
van Garderen, N., Clemens, F. J., & Graule, T. (2014). Development of copper impregnated porous granulates for chemical-looping combustion. Fuel, 119, 323-327. https://doi.org/10.1016/j.fuel.2013.11.063
Improved γ-alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application
van Garderen, N., Clemens, F. J., Aneziris, C. G., & Graule, T. (2012). Improved γ-alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application. Ceramics International, 38(7), 5481-5492. https://doi.org/10.1016/j.ceramint.2012.03.061
Miniature BaTiO<sub>3</sub> PTCR elements fabricated by extrusion
Wegmann, M., Hendry, A., Clemens, F., & Graule, T. (2002). Miniature BaTiO3 PTCR elements fabricated by extrusion. In J. Luyten & J. P. Erauw (Eds.), Shaping II. Proceedings of the second international conference on shaping of advanced ceramics (pp. 321-326). Flemish Institute for Technological Research VITO.
Extrusion of ultra-small BaTiO<sub>3</sub> PTCR elements
Wegmann, M., Hendry, A., Clemens, F., & Graule, T. (2003). Extrusion of ultra-small BaTiO3 PTCR elements. In P. Vincenzini (Ed.), Advances in science and technology: Vol. 33. CIMTEC 2002. 10th international ceramics congress. Part D (pp. 597-606). Techna.
Dispersion of lanthanoid-coated barium titanate in a paraffin-based extrusion binder system
Wegmann, M., Clemens, F., Hendry, A., & Graule, T. (2006). Dispersion of lanthanoid-coated barium titanate in a paraffin-based extrusion binder system. Ceramics International, 32(2), 147-156. https://doi.org/10.1016/j.ceramint.2005.01.011
Microextrusion of lanthanide-doped barium titanate for PTCR applications
Wegmann, M., Clemens, F., Graule, T., & Hendry, A. (2003). Microextrusion of lanthanide-doped barium titanate for PTCR applications. American Ceramic Society Bulletin, 82(11), 9501-9508.
Barium titanate-based PTCR thermistor fibers: processing and properties
Wegmann, M., Brönnimann, R., Clemens, F., & Graule, T. (2007). Barium titanate-based PTCR thermistor fibers: processing and properties. Sensors and Actuators A: Physical, 135(2), 394-404. https://doi.org/10.1016/j.sna.2006.08.008
Forming of noncircular cross-section SiO<sub>2</sub> glass fibers
Wegmann, M., Heiber, J., Clemens, F., Graule, T., Hülsenberg, D., & Schuster, K. (2005). Forming of noncircular cross-section SiO2 glass fibers. Glass Science and Technology, 78(2), 69-75.
Feedstock development for fused deposition of 316L stainless steel and characterization of final materials properties
Wagner, M. A., Sebastian, T., Clemens, F., Wheeler, J. M., Rusch, A., Ganz, R., & Spolenak, R. (2020). Feedstock development for fused deposition of 316L stainless steel and characterization of final materials properties. In Euro PM2020 congress and exhibition. Developing the powder metallurgy future (p. 177045 (6 pp.). European Powder Metallurgy Association (EPMA).
Filament extrusion-based additive manufacturing of NiTi shape memory alloys
Wagner, M. A., Ocana-Pujol, J. L., Hadian, A., Clemens, F., & Spolenak, R. (2023). Filament extrusion-based additive manufacturing of NiTi shape memory alloys. Materials and Design, 225, 111418 (12 pp.). https://doi.org/10.1016/j.matdes.2022.111418
Fused filament fabrication of stainless steel structures - from binder development to sintered properties
Wagner, M. A., Hadian, A., Sebastian, T., Clemens, F., Schweizer, T., Rodriguez-Arbaizar, M., … Spolenak, R. (2022). Fused filament fabrication of stainless steel structures - from binder development to sintered properties. Additive Manufacturing, 49, 102472 (9 pp.). https://doi.org/10.1016/j.addma.2021.102472
Filament extrusion-based additive manufacturing of 316L stainless steel: effects of sintering conditions on the microstructure and mechanical properties
Wagner, M. A., Engel, J., Hadian, A., Clemens, F., Rodriguez-Arbaizar, M., Carreño-Morelli, E., … Spolenak, R. (2022). Filament extrusion-based additive manufacturing of 316L stainless steel: effects of sintering conditions on the microstructure and mechanical properties. Additive Manufacturing, 59, 103147 (12 pp.). https://doi.org/10.1016/j.addma.2022.103147
Dip coating of fibers with ceramic particles
Varga, K., Reifler, F. A., & Clemens, F. (2006). Dip coating of fibers with ceramic particles (pp. 1-5). Presented at the 37th international symposium on novelties in textiles. .
Piezoelectric application of metal oxide nanofibers
Tutu, S., & Clemens, F. (2022). Piezoelectric application of metal oxide nanofibers. In V. Esposito & D. Marani (Eds.), Metal oxides. Metal oxide-based nanofibers and their applications (pp. 215-246). https://doi.org/10.1016/B978-0-12-820629-4.00002-3
Using redundant and disjoint time-variant soft robotic sensors for accurate static state estimation
Thuruthel, T. G., Hughes, J., Georgopoulou, A., Clemens, F., & Iida, F. (2021). Using redundant and disjoint time-variant soft robotic sensors for accurate static state estimation. IEEE Robotics and Automation Letters, 6(2), 2099-2105. https://doi.org/10.1109/LRA.2021.3061399
 

Pages