Active Filters

  • (-) Empa Laboratories ≠ 305 Computational Engineering
  • (-) Keywords = solar cells
Search Results 1 - 20 of 43
Select Page
Characterisation of ultrasonically sprayed In<SUB>x</SUB>S<SUB>y</SUB> buffer layers for Cu(In,Ga)Se<SUB>2 </SUB>solar cells
Ernits, K., Brémaud, D., Buecheler, S., Hibberd, C. J., Kaelin, M., Khrypunov, G., … Tiwari, A. N. (2007). Characterisation of ultrasonically sprayed InxSy buffer layers for Cu(In,Ga)Se2 solar cells. Thin Solid Films, 515(15), 6051-6054. https://doi.org/10.1016/j.tsf.2006.12.168
Enhanced cyanine solar cell performance upon oxygen doping
Fan, B., Hany, R., Moser, J. E., & Nüesch, F. (2008). Enhanced cyanine solar cell performance upon oxygen doping. Organic Electronics, 9(1), 85-94. https://doi.org/10.1016/j.orgel.2007.09.008
Low-band gap polymeric cyanine dyes absorbing in the NIR region
Geiger, T., Benmansour, H., Fan, B., Hany, R., & Nüesch, F. (2008). Low-band gap polymeric cyanine dyes absorbing in the NIR region. Macromolecular Rapid Communications, 29(8), 651-658. https://doi.org/10.1002/marc.200700860
Panchromatic response in solid-state dye-sensitized solar cells containing phosphorescent energy relay dyes
Yum, J. H., Hardin, B. E., Moon, S. J., Baranoff, E., Nüesch, F., McGehee, M. D., … Nazeeruddin, M. K. (2009). Panchromatic response in solid-state dye-sensitized solar cells containing phosphorescent energy relay dyes. Angewandte Chemie International Edition, 48(49), 9277-9280. https://doi.org/10.1002/anie.200904725
Ultrasonically sprayed indium sulfide buffer layers for Cu(In,Ga)(S,Se)<SUB>2</SUB> thin-film solar cells
Corica, D., Buecheler, S., Guettler, D., Chirila, A., Verma, R., Müller, U., … Tiwari, A. N. (2009). Ultrasonically sprayed indium sulfide buffer layers for Cu(In,Ga)(S,Se)2 thin-film solar cells. Thin Solid Films, 517(7), 2312-2315. https://doi.org/10.1016/j.tsf.2008.10.135
Analysis of electronic and optical losses in Cu(In,Ga)Se<SUB>2</SUB>/dye sensitized cell tandem solar cells
Seyrling, S., Wenger, S., Grätzel, M., & Tiwari, A. N. (2010). Analysis of electronic and optical losses in Cu(In,Ga)Se2/dye sensitized cell tandem solar cells. In G. Beaucarne, G. Conibeer, E. Mellikov, R. Schropp, & M. Topič (Eds.), Energy procedia: Vol. 2. Proceedings of inorganic and nanostructured photovoltaics (E-MRS 2009 symposium B) (pp. 199-205). https://doi.org/10.1016/j.egypro.2010.07.029
High mobility transparent conducting oxides for thin film solar cells
Calnan, S., & Tiwari, A. N. (2010). High mobility transparent conducting oxides for thin film solar cells. Thin Solid Films, 518(7), 1839-1849. https://doi.org/10.1016/j.tsf.2009.09.044
Comparative study of different back-contact designs for high-efficiency CIGS solar cells on stainless steel foils
Blösch, P., Chirilǎ, A., Pianezzi, F., Seyrling, S., Rossbach, P., Buecheler, S., … Tiwari, A. N. (2011). Comparative study of different back-contact designs for high-efficiency CIGS solar cells on stainless steel foils. IEEE Journal of Photovoltaics, 1(2), 194-199. https://doi.org/10.1109/JPHOTOV.2011.2166589
Modification of the three-stage evaporation process for CuIn<SUB>1</SUB><I><SUB>−x</SUB></I>Ga<I><SUB>x</SUB></I>Se<SUB>2</SUB> absorber deposition
Seyrling, S., Chirila, A., Güttler, D., Pianezzi, F., Rossbach, P., & Tiwari, A. N. (2011). Modification of the three-stage evaporation process for CuIn1−xGaxSe2 absorber deposition. Thin Solid Films, 519(21), 7232-7236. https://doi.org/10.1016/j.tsf.2010.12.146
Interface formation between CuIn<SUB>1-</SUB><I><SUB>x</SUB></I>Ga<I><SUB>x</SUB></I>Se<SUB>2</SUB> absorber and In<SUB>2</SUB>S<SUB>3</SUB> buffer layer deposited by ultrasonic spray pyrolysis
Buecheler, S., Pianezzi, F., Fella, C., Chirila, A., Decock, K., Burgelman, M., & Tiwari, A. N. (2011). Interface formation between CuIn1-xGaxSe2 absorber and In2S3 buffer layer deposited by ultrasonic spray pyrolysis. Thin Solid Films, 519(21), 7560-7563. https://doi.org/10.1016/j.tsf.2011.01.370
CuIn<SUB>1-</SUB><I><SUB>x</SUB></I>Ga<I><SUB>x</SUB></I>Se<SUB>2</SUB> growth process modifications: influences on microstructure, Na distribution, and device properties
Seyrling, S., Chirilă, A., Güttler, D., Blösch, P., Pianezzi, F., Verma, R., … Tiwari, A. N. (2011). CuIn1-xGaxSe2 growth process modifications: influences on microstructure, Na distribution, and device properties. Solar Energy Materials and Solar Cells, 95(6), 1477-1481. https://doi.org/10.1016/j.solmat.2011.01.003
Effect of sodium on recrystallization and photovoltaic properties of CdTe solar cells
Kranz, L., Perrenoud, J., Pianezzi, F., Gretener, C., Rossbach, P., Buecheler, S., & Tiwari, A. N. (2012). Effect of sodium on recrystallization and photovoltaic properties of CdTe solar cells. Solar Energy Materials and Solar Cells, 105, 213-219. https://doi.org/10.1016/j.solmat.2012.06.019
Influence of high growth rates on evaporated Cu(In,Ga)Se2 layers and solar cells
Chirilǎ, A., Seyrling, S., Buecheler, S., Guettler, D., Nishiwaki, S., Romanyuk, Y. E., … Tiwari, A. N. (2012). Influence of high growth rates on evaporated Cu(In,Ga)Se2 layers and solar cells. Progress in Photovoltaics, 20(2), 209-216. https://doi.org/10.1002/pip.1122
Design of p-CuO/n-ZnO heterojunctions by rf magnetron sputtering
Saji, K. J., Populoh, S., Tiwari, A. N., & Romanyuk, Y. E. (2013). Design of p-CuO/n-ZnO heterojunctions by rf magnetron sputtering. Physica Status Solidi A: Applications and Materials, 210(7), 1386-1391. https://doi.org/10.1002/pssa.201228293
Defect spectroscopy of Cu(In,Ga)Se<SUB>2</SUB>-based thin film solar cells on polyimide substrate
Urbaniak, A., Igalson, M., Krysztopa, A., Chirilă, A., Buecheler, S., Pianezzi, F., & Tiwari, A. N. (2013). Defect spectroscopy of Cu(In,Ga)Se2-based thin film solar cells on polyimide substrate. Thin Solid Films, 535, 314-317. https://doi.org/10.1016/j.tsf.2013.02.032
Development of MoO<SUB>x</SUB> thin films as back contact buffer for CdTe solar cells in substrate configuration
Gretener, C., Perrenoud, J., Kranz, L., Baechler, C., Yoon, S., Romanyuk, Y. E., … Tiwari, A. N. (2013). Development of MoOx thin films as back contact buffer for CdTe solar cells in substrate configuration. Thin Solid Films, 535, 193-197. https://doi.org/10.1016/j.tsf.2012.11.110
Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules
Reinhard, P., Chirila, A., Blösch, P., Pianezzi, F., Nishiwaki, S., Buecheler, S., & Tiwari, A. N. (2013). Review of progress toward 20% efficiency flexible CIGS solar cells and manufacturing issues of solar modules. IEEE Journal of Photovoltaics, 3(1), 572-580. https://doi.org/10.1109/JPHOTOV.2012.2226869
Influence of iron on the performance of CIGS thin-film solar cells
Wuerz, R., Eicke, A., Kessler, F., & Pianezzi, F. (2014). Influence of iron on the performance of CIGS thin-film solar cells. Solar Energy Materials and Solar Cells, 130, 107-117. https://doi.org/10.1016/j.solmat.2014.06.038
Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells
Weidelener, M., Powar, S., Kast, H., Yu, Z., Boix, P. P., Li, C., … Bäuerle, P. (2014). Synthesis and characterization of organic dyes with various electron-accepting substituents for p-type dye-sensitized solar cells. Chemistry: An Asian Journal, 9(11), 3251-3263. https://doi.org/10.1002/asia.201402654
Cu<SUB>2</SUB>ZnSn(S,Se)<SUB>4</SUB> solar cell absorbers processed from Na-containing solutions in DMSO
Werner, M., Sutter-Fella, C. M., Hagendorfer, H., Romanyuk, Y. E., & Tiwari, A. N. (2015). Cu2ZnSn(S,Se)4 solar cell absorbers processed from Na-containing solutions in DMSO. Physica Status Solidi A: Applications and Materials, 212(1), 116-120. https://doi.org/10.1002/pssa.201431146