Active Filters

  • (-) Empa Laboratories ≠ 499 Center for X-ray Analytics
  • (-) Keywords = wood
Search Results 1 - 20 of 57
Select Page
Water sorption in wood cell walls–data exploration of the influential physicochemical characteristics
Fredriksson, M., Rüggeberg, M., Nord-Larsen, T., Beck, G., & Thybring, E. E. (2023). Water sorption in wood cell walls–data exploration of the influential physicochemical characteristics. Cellulose, 30(4), 1857-1871. https://doi.org/10.1007/s10570-022-04973-0
Investigation of coupled vapor and heat transport in hygroscopic material during adsorption and desorption
Zhou, X., Desmarais, G., Carl, S., Mannes, D., Derome, D., & Carmeliet, J. (2022). Investigation of coupled vapor and heat transport in hygroscopic material during adsorption and desorption. Building and Environment, 214, 108845 (14 pp.). https://doi.org/10.1016/j.buildenv.2022.108845
Local force titration of wood surfaces by chemical force microscopy
Gusenbauer, C., Peter, K., Cabane, E., & Konnerth, J. (2022). Local force titration of wood surfaces by chemical force microscopy. Cellulose, 29, 763-776. https://doi.org/10.1007/s10570-021-04342-3
Natural wood-based catalytic membrane microreactors for continuous hydrogen generation
Tu, K., Büchele, S., Mitchell, S., Stricker, L., Liu, C., Goldhahn, C., … Keplinger, T. (2022). Natural wood-based catalytic membrane microreactors for continuous hydrogen generation. ACS Applied Materials and Interfaces, 14(6), 8417-8426. https://doi.org/10.1021/acsami.1c22850
Thermoresponsive smart gating wood membranes
Ding, Y., Panzarasa, G., Stucki, S., Burgert, I., & Keplinger, T. (2022). Thermoresponsive smart gating wood membranes. ACS Sustainable Chemistry and Engineering, 10(17), 5517-5525. https://doi.org/10.1021/acssuschemeng.2c00111
Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects
Sun, J., Schütz, U., Tu, K., Koch, S. M., Roman, G., Stucki, S., … Panzarasa, G. (2022). Scalable and sustainable wood for efficient mechanical energy conversion in buildings via triboelectric effects. Nano Energy, 102, 107670 (14 pp.). https://doi.org/10.1016/j.nanoen.2022.107670
Review on design strategies and applications of metal-organic framework-cellulose composites
Tu, K., Ding, Y., & Keplinger, T. (2022). Review on design strategies and applications of metal-organic framework-cellulose composites. Carbohydrate Polymers, 291, 119539 (18 pp.). https://doi.org/10.1016/j.carbpol.2022.119539
Effect of coating systems as a barrier to humidity for lutherie woods studied by neutron radiography
Festa, G., Lämmlein, S. L., Senesi, R., Price, J., Chiesa, C., Scatigno, C., … Andreani, C. (2020). Effect of coating systems as a barrier to humidity for lutherie woods studied by neutron radiography. Journal of Cultural Heritage, 43, 255-260. https://doi.org/10.1016/j.culher.2019.11.004
Water accessibility to hydroxyls confined in solid wood cell walls
Thybring, E. E., Piqueras, S., Tarmian, A., & Burgert, I. (2020). Water accessibility to hydroxyls confined in solid wood cell walls. Cellulose, 27(10), 5617-5627. https://doi.org/10.1007/s10570-020-03182-x
Luminescent and hydrophobic wood films as optical lighting materials
Fu, Q., Tu, K., Goldhahn, C., Keplinger, T., Adobes-Vidal, M., Sorieul, M., & Burgert, I. (2020). Luminescent and hydrophobic wood films as optical lighting materials. ACS Nano, 14(10), 13775-13783. https://doi.org/10.1021/acsnano.0c06110
Ethylene signaling is required for fully functional tension wood in hybrid aspen
Seyfferth, C., Wessels, B. A., Gorzsás, A., Love, J. W., Rüggeberg, M., Delhomme, N., … Felten, J. (2019). Ethylene signaling is required for fully functional tension wood in hybrid aspen. Frontiers in Plant Science, 10, 1101 (17 pp.). https://doi.org/10.3389/fpls.2019.01101
Wood–moisture relationships studied with molecular simulations: methodological guidelines
Chen, M., Zhang, C., Shomali, A., Coasne, B., Carmeliet, J., & Derome, D. (2019). Wood–moisture relationships studied with molecular simulations: methodological guidelines. Forests, 10(8), 628 (27 pp.). https://doi.org/10.3390/f10080628
Porosity and pore size distribution of native and delignified beech wood determined by mercury intrusion porosimetry
Vitas, S., Segmehl, J. S., Burgert, I., & Cabane, E. (2019). Porosity and pore size distribution of native and delignified beech wood determined by mercury intrusion porosimetry. Materials, 12(3), 416 (13 pp.). https://doi.org/10.3390/ma12030416
Mechanical properties and structure–function trade-offs in secondary xylem of young roots and stems
Plavcová, L., Gallenmüller, F., Morris, H., Khatamirad, M., Jansen, S., & Speck, T. (2019). Mechanical properties and structure–function trade-offs in secondary xylem of young roots and stems. Journal of Experimental Botany, 70(14), 3679-3691. https://doi.org/10.1093/jxb/erz286
Adhesive wood joints under quasi-static and cyclic fatigue fracture mode II loads
Clerc, G., Brunner, A. J., Josset, S., Niemz, P., Pichelin, F., & Van de Kuilen, J. W. G. (2019). Adhesive wood joints under quasi-static and cyclic fatigue fracture mode II loads. International Journal of Fatigue, 123, 40-52. https://doi.org/10.1016/j.ijfatigue.2019.02.008
Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results?
Prats-Mateu, B., Felhofer, M., de Juan, A., & Gierlinger, N. (2018). Multivariate unmixing approaches on Raman images of plant cell walls: new insights or overinterpretation of results? Plant Methods, 14(1), 52 (20 pp.). https://doi.org/10.1186/s13007-018-0320-9
An autonomous shading system based on coupled wood bilayer elements
Vailati, C., Bachtiar, E., Hass, P., Burgert, I., & Rüggeberg, M. (2018). An autonomous shading system based on coupled wood bilayer elements. Energy and Buildings, 158, 1013-1022. https://doi.org/10.1016/j.enbuild.2017.10.042
Timber-mortar composites: the effect of sol-gel surface modification on the wood-adhesive interface
Kostic, S., Merk, V., Berg, J. K., Hass, P., Burgert, I., & Cabane, E. (2018). Timber-mortar composites: the effect of sol-gel surface modification on the wood-adhesive interface. Composite Structures, 201, 828-833. https://doi.org/10.1016/j.compstruct.2018.06.108
Hygroscopically actuated wood elements for weather responsive and self-forming building parts – facilitating upscaling and complex shape changes
Wood, D., Vailati, C., Menges, A., & Rüggeberg, M. (2018). Hygroscopically actuated wood elements for weather responsive and self-forming building parts – facilitating upscaling and complex shape changes. Construction and Building Materials, 165, 782-791. https://doi.org/10.1016/j.conbuildmat.2017.12.134
Bioinspired wood nanotechnology for functional materials
Berglund, L. A., & Burgert, I. (2018). Bioinspired wood nanotechnology for functional materials. Advanced Materials, 30(19), 1704285 (15 pp.). https://doi.org/10.1002/adma.201704285