Active Filters

  • (-) Empa Laboratories ≠ 509 Acoustics / Noise Control
  • (-) Empa Authors = Graule, Thomas J.
Search Results 1 - 20 of 372

Pages

  • RSS Feed
Select Page
Influence of porous substrate on copper based oxygen carrier efficiency for chemical-looping combustion
van Garderen, N., Otal, E. H., Aneziris, C. G., Graule, T., & Clemens, F. J. (2014). Influence of porous substrate on copper based oxygen carrier efficiency for chemical-looping combustion. Microporous and Mesoporous Materials, 190, 362-370. https://doi.org/10.1016/j.micromeso.2014.02.017
Comparison methods for microstructure analysis on highly porous extrudates based on diatomite filter aids
van Garderen, N., Graule, T., Aneziris, C. G., & Clemens, F. J. (2013). Comparison methods for microstructure analysis on highly porous extrudates based on diatomite filter aids. Microporous and Mesoporous Materials, 171, 215-222. https://doi.org/10.1016/j.micromeso.2012.12.022
Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material
van Garderen, N., Clemens, F. J., Mezzomo, M., Bergmann, C. P., & Graule, T. (2011). Investigation of clay content and sintering temperature on attrition resistance of highly porous diatomite based material. Applied Clay Science, 52(1-2), 115-121. https://doi.org/10.1016/j.clay.2011.02.008
Investigation of sintering temperature on attrition resistance of highly porous diatomite based material
van Garderen, N., Clemens, F. J., Scharf, D., & Graule, T. (2010). Investigation of sintering temperature on attrition resistance of highly porous diatomite based material. In K. Vafai (Ed.), AIP conference proceedings: Vol. 1254. Porous media and its applications in science, engineering and industry (pp. 260-265). https://doi.org/10.1063/1.3453821
Pore analyses of highly porous diatomite and clay based materials for fluidized bed reactors
van Garderen, N., Clemens, F. J., Kaufmann, J., Urbanek, M., Binkowski, M., Graule, T., & Aneziris, C. G. (2012). Pore analyses of highly porous diatomite and clay based materials for fluidized bed reactors. Microporous and Mesoporous Materials, 151, 255-263. https://doi.org/10.1016/j.micromeso.2011.10.028
Development of copper impregnated porous granulates for chemical-looping combustion
van Garderen, N., Clemens, F. J., & Graule, T. (2014). Development of copper impregnated porous granulates for chemical-looping combustion. Fuel, 119, 323-327. https://doi.org/10.1016/j.fuel.2013.11.063
Improved γ-alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application
van Garderen, N., Clemens, F. J., Aneziris, C. G., & Graule, T. (2012). Improved γ-alumina support based pseudo-boehmite shaped by micro-extrusion process for oxygen carrier support application. Ceramics International, 38(7), 5481-5492. https://doi.org/10.1016/j.ceramint.2012.03.061
Interactions and dispersion stability of aluminum oxide colloidal particles in electroless nickel solutions in the presence of comb polyelectrolytes
de Hazan, Y., Reuter, T., Werner, D., Clasen, R., & Graule, T. (2008). Interactions and dispersion stability of aluminum oxide colloidal particles in electroless nickel solutions in the presence of comb polyelectrolytes. Journal of Colloid and Interface Science, 323(2), 293-300. https://doi.org/10.1016/j.jcis.2008.03.036
Shaping radiation curable colloidal dispersions – from polymer/ceramic fibers and microspheres to gradient porosity ceramic bulk materials
de Hazan, Y., Wozniak, M., Heinecke, J., Müller, G., Märkl, V., & Graule, T. (2010). Shaping radiation curable colloidal dispersions – from polymer/ceramic fibers and microspheres to gradient porosity ceramic bulk materials. In T. Ohji, M. Singh, & S. Mathur (Eds.), Ceramic engineering and science proceedings: Vol. 31. Advanced processing and manufacturing technologies for structural and multifunctional materials IV (pp. 85-95). Wiley.
New microshaping concepts for ceramic/polymer nanocomposite and nanoceramic fibers
de Hazan, Y., Wozniak, M., Heinecke, J., Müller, G., & Graule, T. (2010). New microshaping concepts for ceramic/polymer nanocomposite and nanoceramic fibers. Journal of the American Ceramic Society, 93(9), 2456-2459. https://doi.org/10.1111/j.1551-2916.2010.03802.x
Modeling the effect of molecular architecture of comb polymers on the behavior of Al<sub>2</sub>O<sub>3</sub> dispersions using charge/composition factors (CCF)
de Hazan, Y., Wilkens-Heinecke, J., & Graule, T. (2014). Modeling the effect of molecular architecture of comb polymers on the behavior of Al2O3 dispersions using charge/composition factors (CCF). Colloid and Polymer Science, 292(7), 1701-1710. https://doi.org/10.1007/s00396-014-3232-x
Homogeneous electroless Ni-P/SiO<SUB>2</SUB> nanocomposite coatings with improved wear resistance and modified wear behavior
de Hazan, Y., Zimmermann, D., Z'graggen, M., Roos, S., Aneziris, C., Bollier, H., … Graule, T. (2010). Homogeneous electroless Ni-P/SiO2 nanocomposite coatings with improved wear resistance and modified wear behavior. Surface and Coatings Technology, 204(21-22), 3464-3470. https://doi.org/10.1016/j.surfcoat.2010.04.007
Functional ceramic and nanocomposite fibers, cellular articles and microspheres via radiation curable colloidal dispersions
de Hazan, Y., Märkl, V., Heinecke, J., Aneziris, C., & Graule, T. (2011). Functional ceramic and nanocomposite fibers, cellular articles and microspheres via radiation curable colloidal dispersions. Journal of the European Ceramic Society, 31(14), 2601-2611. https://doi.org/10.1016/j.jeurceramsoc.2010.12.006
Homogeneous Ni-P/Al<SUB>2</SUB>O<SUB>3</SUB> nanocomposite coatings from stable dispersions in electroless nickel baths
de Hazan, Y., Werner, D., Z'graggen, M., Groteklaes, M., & Graule, T. (2008). Homogeneous Ni-P/Al2O3 nanocomposite coatings from stable dispersions in electroless nickel baths. Journal of Colloid and Interface Science, 328(1), 103-109. https://doi.org/10.1016/j.jcis.2008.08.033
Homogeneous functional Ni-P/ceramic nanocomposite coatings via stable dispersions in electroless nickel electrolytes
de Hazan, Y., Knies, F., Burnat, D., Graule, T., Yamada-Pittini, Y., Aneziris, C., & Kraak, M. (2012). Homogeneous functional Ni-P/ceramic nanocomposite coatings via stable dispersions in electroless nickel electrolytes. Journal of Colloid and Interface Science, 365(1), 163-171. https://doi.org/10.1016/j.jcis.2011.09.032
High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants
de Hazan, Y., Heinecke, J., Weber, A., & Graule, T. (2009). High solids loading ceramic colloidal dispersions in UV curable media via comb-polyelectrolyte surfactants. Journal of Colloid and Interface Science, 337(1), 66-74. https://doi.org/10.1016/j.jcis.2009.05.012
Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions
Zürcher, S., & Graule, T. (2005). Influence of dispersant structure on the rheological properties of highly-concentrated zirconia dispersions. Journal of the European Ceramic Society, 25(6), 863-873. https://doi.org/10.1016/j.jeurceramsoc.2004.05.002
Metal cation complexes as dispersing agents for non-aqueous powder suspensions
Zubrzycka, P., Radecka, M., Graule, T., & Stuer, M. (2021). Metal cation complexes as dispersing agents for non-aqueous powder suspensions. Ceramics International, 47(13), 18443-18454. https://doi.org/10.1016/j.ceramint.2021.03.168
MgAl2O4 spinel with transmittance approaching theoretical value at reduced sintering temperatures
Zubrzycka, P., Radecka, M., Graule, T., Trenczek-Zając, A., Zientara, D., & Stuer, M. (2024). MgAl2O4 spinel with transmittance approaching theoretical value at reduced sintering temperatures. Journal of the European Ceramic Society. https://doi.org/10.1016/j.jeurceramsoc.2024.03.049
Debinding of additively manufactured parts from spinel powders with particle sizes below 200 nm
Zubrzycka, P., Radecka, M., Graule, T., & Stuer, M. (2023). Debinding of additively manufactured parts from spinel powders with particle sizes below 200 nm. Ceramics International, 49(7), 11355-11367. https://doi.org/10.1016/j.ceramint.2022.11.335
 

Pages