Active Filters

  • (-) Empa Laboratories ≠ 509 Acoustics / Noise Control
  • (-) Keywords = nanomaterials
Search Results 1 - 20 of 43
Select Page
In vitro-ex vivo model systems for nanosafety assessment
Wick, P., Chortarea, S., Guenat, O. T., Roesslein, M., Stucki, J. D., Hirn, S., … Rothen-Rutishauser, B. (2015). In vitro-ex vivo model systems for nanosafety assessment. European Journal of Nanomedicine, 7(3), 169-179. https://doi.org/10.1515/ejnm-2014-0049
Analytical and toxicological aspects of nanomaterials in different product groups: challenges and opportunities
Tschiche, H. R., Bierkandt, F. S., Creutzenberg, O., Fessard, V., Franz, R., Greiner, R., … Laux, P. (2022). Analytical and toxicological aspects of nanomaterials in different product groups: challenges and opportunities. NanoImpact, 28, 100416 (15 pp.). https://doi.org/10.1016/j.impact.2022.100416
Safe(r) by design implementation in the nanotechnology industry
Sánchez Jiménez, A., Puelles, R., Pérez-Fernández, M., Gómez-Fernández, P., Barruetabeña, L., Jacobsen, N. R., … Rodríguez Llopis, I. (2020). Safe(r) by design implementation in the nanotechnology industry. NanoImpact, 20, 100267 (12 pp.). https://doi.org/10.1016/j.impact.2020.100267
Scientific basis for regulatory decision-making of nanomaterials report on the workshop, 20–21 January 2014, center of applied ecotoxicology, Dübendorf
Studer, C., Aicher, L., Gasic, B., von Goetz, N., Hoet, P., Huwyler, J., … Walser, T. (2015). Scientific basis for regulatory decision-making of nanomaterials report on the workshop, 20–21 January 2014, center of applied ecotoxicology, Dübendorf. Chimia, 69(1-2), 52-56. https://doi.org/10.2533/chimia.2015.52
Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation
Stone, V., Nowack, B., Baun, A., van den Brink, N., von der Kammer, F., Dusinska, M., … Fernandes, T. F. (2010). Nanomaterials for environmental studies: classification, reference material issues, and strategies for physico-chemical characterisation. Science of the Total Environment, 408(7), 1745-1754. https://doi.org/10.1016/j.scitotenv.2009.10.035
DaNa 2.0 ― verlässliche Informationen zur Sicherheit von marktüblichen Nanomaterialien. DaNa 2.0 ― reliable information on the safety of commercially available nanomaterials
Steinbach, C., Bohmer, N., Krug, H. F., Kühnel, D., Nau, K., Paul, F., … Marquardt, C. (2017). DaNa 2.0 ― verlässliche Informationen zur Sicherheit von marktüblichen Nanomaterialien. DaNa 2.0 ― reliable information on the safety of commercially available nanomaterials. Chemie Ingenieur Technik, 89(3), 232-238. https://doi.org/10.1002/cite.201600074
Environmental and health effects of nanomaterials in nanotextiles and façade coatings
Som, C., Wick, P., Krug, H., & Nowack, B. (2011). Environmental and health effects of nanomaterials in nanotextiles and façade coatings. Environment International, 37(6), 1131-1142. https://doi.org/10.1016/j.envint.2011.02.013
Nanotoxicology: “The end of the beginning” – signs on the roadmap to a strategy for assuring the safe application and use of nanomaterials
Silbergeld, E. K., Contreras, E. Q., Hartung, T., Hirsch, C., Hogberg, H., Jachak, A. C., … Zurlo, J. (2011). Nanotoxicology: “The end of the beginning” – signs on the roadmap to a strategy for assuring the safe application and use of nanomaterials. ALTEX: Alternatives to Animal Experimentation, 28(3), 236-241. https://doi.org/10.14573/altex.2011.3.236
Environmental risk assessment strategy for nanomaterials
Scott‐Fordsmand, J. J., Peijnenburg, W. J. G. M., Semenzin, E., Nowack, B., Hunt, N., Hristozov, D., … Hund‐Rinke, K. (2017). Environmental risk assessment strategy for nanomaterials. International Journal of Environmental Research and Public Health, 14(10), 1251 (20 pp.). https://doi.org/10.3390/ijerph14101251
Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials
Salieri, B., Barruetabeña, L., Rodríguez-Llopis, I., Raun Jacobsen, N., Manier, N., Trouiller, B., … Hischier, R. (2021). Integrative approach in a safe by design context combining risk, life cycle and socio-economic assessment for safer and sustainable nanomaterials. NanoImpact, 23, 100335 (13 pp.). https://doi.org/10.1016/j.impact.2021.100335
Human epithelial cells in vitro: are they an advantageous tool to help understand the nanomaterial-biological barrier interaction?
Rothen-Rutishauser, B., Clift, M. J. D., Jud, C., Fink, A., & Wick, P. (2012). Human epithelial cells in vitro: are they an advantageous tool to help understand the nanomaterial-biological barrier interaction? Euro-Nanotox-Letters, 4(1), 1-20. https://doi.org/10.1515/entl-2015-0004
Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world
Piccinno, F., Gottschalk, F., Seeger, S., & Nowack, B. (2012). Industrial production quantities and uses of ten engineered nanomaterials in Europe and the world. Journal of Nanoparticle Research, 14(9), 1109 (11 pp.). https://doi.org/10.1007/s11051-012-1109-9
The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment
Nowack, B., Bornhöft, N., Ding, Y., Riediker, M., Sánchez Jiménez, A., Sun, T., … Wohlleben, W. (2016). The Flows of Engineered Nanomaterials from Production, Use, and Disposal to the Environment. In M. Viana (Ed.), The Handbook of Environmental Chemistry: Vol. 48. Indoor and Outdoor Nanoparticles (pp. 209-231). https://doi.org/10.1007/698_2015_402
How to consider engineered nanomaterials in major accident regulations?
Nowack, B., Mueller, N. C., Krug, H. F., & Wick, P. (2014). How to consider engineered nanomaterials in major accident regulations? Environmental Sciences Europe, 26, 2 (10 pp.). https://doi.org/10.1186/2190-4715-26-2
The DaNa<SUP>2.0</SUP> knowledge base on nanomaterials ― communicating current nanosafety research based on evaluated literature data
Nau, K., Bohmer, N., Kühnel, D., Marquardt, C., Paul, F., Steinbach, C., & Krug, H. F. (2016). The DaNa2.0 knowledge base on nanomaterials ― communicating current nanosafety research based on evaluated literature data. Journal of Materials Education, 38(3-4), 93-108.
Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products
Mitrano, D. M., Motellier, S., Clavaguera, S., & Nowack, B. (2015). Review of nanomaterial aging and transformations through the life cycle of nano-enhanced products. Environment International, 77, 132-147. https://doi.org/10.1016/j.envint.2015.01.013
Understanding nanomaterial biotransformation: an unmet challenge to achieving predictive nanotoxicology
Milosevic, A., Romeo, D., & Wick, P. (2020). Understanding nanomaterial biotransformation: an unmet challenge to achieving predictive nanotoxicology. Small, 16(36), 1907650 (5 pp.). https://doi.org/10.1002/smll.201907650
Photocatalytic activity of W-doped TiO<sub>2</sub> nanopowders
Michalow, K. A., Vital, A., Heel, A., Graule, T., Reifler, F. A., Ritter, A., … Rekas, M. (2008). Photocatalytic activity of W-doped TiO2 nanopowders. Journal of Advanced Oxidation Technologies, 11(1), 56-64. https://doi.org/10.1515/jaots-2008-0107
Nanocrystalline TiO<SUB>2</SUB>/SnO<SUB>2</SUB> heterostructures for gas sensing
Lyson-Sypien, B., Kusior, A., Rekas, M., Zukrowski, J., Gajewska, M., Michalow-Mauke, K., … Zakrzewska, K. (2017). Nanocrystalline TiO2/SnO2 heterostructures for gas sensing. Beilstein Journal of Nanotechnology, 8, 108-122. https://doi.org/10.3762/bjnano.8.12
Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites
Lanfant, B., Leconte, Y., Debski, N., Bonnefont, G., Pinault, M., Mayne-L′Hermite, M., … Bernard, F. (2019). Mechanical, thermal and electrical properties of nanostructured CNTs/SiC composites. Ceramics International, 45(2), 2566-2575. https://doi.org/10.1016/j.ceramint.2018.10.187