Active Filters

  • (-) Empa Laboratories ≠ 201 High Performance Ceramics
  • (-) Empa Laboratories = 203 Magnetic and Functional Thin Films
Search Results 1 - 20 of 411

Pages

  • RSS Feed
Select Page
2024 roadmap on magnetic microscopy techniques and their applications in materials science
Christensen, D. V., Staub, U., Devidas, T. R., Kalisky, B., Nowack, K., Webb, J. L., … Mandru, A. O. (2024). 2024 roadmap on magnetic microscopy techniques and their applications in materials science. Journal of Physics: Materials. https://doi.org/10.1088/2515-7639/ad31b5
Tuning of the magneto-caloric effects in Ni<sub>43</sub>Mn<sub>46</sub>In<sub>11</sub> magnetic shape memory alloys by substitution of boron
Saritaş, S., Çiçek, M. M., Kavak, E., Gurpinar, K., Yildirim, O., Yuce, S., … Emre, B. (2024). Tuning of the magneto-caloric effects in Ni43Mn46In11 magnetic shape memory alloys by substitution of boron. Journal of Physics: Condensed Matter, 36(7), 075801 (11 pp.). https://doi.org/10.1088/1361-648X/ad0a13
A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters
Pan, F., Altenried, S., Scheibler, S., & Ren, Q. (2024). A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters. Nanoscale, 16(6), 3011-3023. https://doi.org/10.1039/d3nr05463b
Hard X-ray photoelectron spectroscopy reveals self-organized structures of electrocatalytic nickel oxy-hydroxides
Longo, F., Billeter, E., Kazaz, S., Cesarini, A., Nikolic, M., Chacko, A., … Borgschulte, A. (2023). Hard X-ray photoelectron spectroscopy reveals self-organized structures of electrocatalytic nickel oxy-hydroxides. Surface Science, 739, 122397 (11 pp.). https://doi.org/10.1016/j.susc.2023.122397
Inducing in-plane uniaxial magnetic anisotropies in amorphous CoFeB thin films
Scheibler, S., Yildirim, O., Herrmann, I. K., & Hug, H. J. (2023). Inducing in-plane uniaxial magnetic anisotropies in amorphous CoFeB thin films. Journal of Magnetism and Magnetic Materials, 585, 171015 (5 pp.). https://doi.org/10.1016/j.jmmm.2023.171015
Investigation of the inverse magnetocaloric effect with the fraction method
Yuce, S., Kavak, E., Yildirim, O., Bruno, N. M., & Emre, B. (2023). Investigation of the inverse magnetocaloric effect with the fraction method. Journal of Physics: Condensed Matter, 35(34), 345801 (8 pp.). https://doi.org/10.1088/1361-648X/acd3ce
A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy
Liu, H., Ahmed, Z., Vranjkovic, S., Parschau, M., Mandru, A. O., & Hug, H. J. (2022). A cantilever-based, ultrahigh-vacuum, low-temperature scanning probe instrument for multidimensional scanning force microscopy. Beilstein Journal of Nanotechnology, 13, 1120-1140. https://doi.org/10.3762/BJNANO.13.95
Quantitative magnetic force microscopy: transfer-function method revisited
Feng, Y., Mandru, A. O., Yıldırım, O., & Hug, H. J. (2022). Quantitative magnetic force microscopy: transfer-function method revisited. Physical Review Applied, 18(2), 024016 (17 pp.). https://doi.org/10.1103/PhysRevApplied.18.024016
Tuning the coexistence regime of incomplete and tubular skyrmions in ferromagnetic/ferrimagnetic/ferromagnetic trilayers
Ylldlrlm, O., Tomasello, R., Feng, Y., Carlotti, G., Tacchi, S., Mirzadeh Vaghefi, P., … Mandru, A. O. (2022). Tuning the coexistence regime of incomplete and tubular skyrmions in ferromagnetic/ferrimagnetic/ferromagnetic trilayers. ACS Applied Materials and Interfaces, 14(29), 34002-34010. https://doi.org/10.1021/acsami.2c06608
Investigation of the complex magnetic behavior of Ni<sub>46.86</sub>Co<sub>2.91</sub>Mn<sub>38.17</sub>Sn<sub>12.06</sub>(at%) magnetic shape memory alloy at low temperatures
Ylldlrlm, O., Yuce, S., Bruno, N. M., Doǧan, E. K., Yurtseven, H., Duman, E., & Emre, B. (2022). Investigation of the complex magnetic behavior of Ni46.86Co2.91Mn38.17Sn12.06(at%) magnetic shape memory alloy at low temperatures. Physica Scripta, 97(8), 085806 (12 pp.). https://doi.org/10.1088/1402-4896/ac7bb4
Magnetic force microscopy contrast formation and field sensitivity
Feng, Y., Mirzadeh Vaghefi, P., Vranjkovic, S., Penedo, M., Kappenberger, P., Schwenk, J., … Hug, H. J. (2022). Magnetic force microscopy contrast formation and field sensitivity. Journal of Magnetism and Magnetic Materials, 551, 169073 (8 pp.). https://doi.org/10.1016/j.jmmm.2022.169073
Spin-polarized tunneling with Au impurity layers
Gabureac, M. S., Dempsey, K. J., Porter, N. A., Marrows, C. H., Rajauria, S., & Courtois, H. (2008). Spin-polarized tunneling with Au impurity layers. Journal of Applied Physics, 103(7), 07A915 (3 pp.). https://doi.org/10.1063/1.2839623
Temperature dependent remanence loops of ion-milled bit patterned media
Belle, B. D., Schedin, F., Ashworth, T. V., Nutter, P. W., Hill, E. W., Hug, H. J., & Miles, J. J. (2008). Temperature dependent remanence loops of ion-milled bit patterned media. IEEE Transactions on Magnetics, 44(11), 3468-3471. https://doi.org/10.1109/TMAG.2008.2001791
Can interface charge enhance selectivity in tunnel layer passivated contacts? Using negatively charged aluminium oxide capped with dopant free PEDOT or boron doped polysilicon
Kaur, G., Dutta, T., Sridharan, R., Zheng, X., Danner, A., & Stangl, R. (2021). Can interface charge enhance selectivity in tunnel layer passivated contacts? Using negatively charged aluminium oxide capped with dopant free PEDOT or boron doped polysilicon. Solar Energy Materials and Solar Cells, 221, 110857 (9 pp.). https://doi.org/10.1016/j.solmat.2020.110857
Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon
Dwivedi, N., Neogi, A., Patra, T. K., Dhand, C., Dutta, T., Yeo, R. J., … Bhatia, C. S. (2021). Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon. Nano Letters, 21, 8960-8969. https://doi.org/10.1021/acs.nanolett.1c01997
Growth dynamics and electron reflectivity in ultrathin films of chiral heptahelicene on metal (100) surfaces studied by spin-polarized low energy electron microscopy
Baljozović, M., Fernandes Cauduro, A. L., Seibel, J., Mairena, A., Grass, S., Lacour, J., … Ernst, K. H. (2021). Growth dynamics and electron reflectivity in ultrathin films of chiral heptahelicene on metal (100) surfaces studied by spin-polarized low energy electron microscopy. Physica Status Solidi B: Basic Research, 258(12), 2100263 (8 pp.). https://doi.org/10.1002/pssb.202100263
Tuning the perpendicular magnetic anisotropy in Co/Pt multilayers grown by facing target sputtering and conventional sputtering
Yıldırım, O., Marioni, M. A., Falub, C. V., Rohrmann, H., Jaeger, D., Rechsteiner, M., … Hug, H. J. (2022). Tuning the perpendicular magnetic anisotropy in Co/Pt multilayers grown by facing target sputtering and conventional sputtering. Scripta Materialia, 207, 114285 (4 pp.). https://doi.org/10.1016/j.scriptamat.2021.114285
Determination of the surface diffusion coefficient and the residence time of adsorbates via local focused electron beam induced chemical vapour deposition
Szkudlarek, A., Gabureac, M., & Utke, I. (2011). Determination of the surface diffusion coefficient and the residence time of adsorbates via local focused electron beam induced chemical vapour deposition. Journal of Nanoscience and Nanotechnology, 11(9), 8074-8078. https://doi.org/10.1166/jnn.2011.5066
Nanosynthesis of tunable composite materials by room-temperature pulsed focused electron beam induced chemical vapour deposition
Gabureac, M. S., Bernau, L., & Utke, I. (2011). Nanosynthesis of tunable composite materials by room-temperature pulsed focused electron beam induced chemical vapour deposition. Journal of Nanoscience and Nanotechnology, 11(9), 7982-7987. https://doi.org/10.1166/jnn.2011.5067
High spatial resolution Hall nano-sensors by tuned direct-write Co/C-FEBID
Gabureac, M. S., Bernau, L., Boero, G., & Utke, I. (2011). High spatial resolution Hall nano-sensors by tuned direct-write Co/C-FEBID. In TechConnect briefs: Vol. 2. Nanotechnology 2011. Electronics, devices, fabrication, MEMS, fluidics and computational (pp. 226-229).
 

Pages