Active Filters

  • (-) Journal ≠ Advanced Materials
  • (-) Keywords = nanocomposite
Search Results 1 - 20 of 44
Select Page
Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure
Zeng, Z., Qiao, J., Zhang, R., Liu, J., & Nyström, G. (2022). Nanocellulose-assisted preparation of electromagnetic interference shielding materials with diversified microstructure. SmartMat, 3(4), 582-607. https://doi.org/10.1002/smm2.1118
Adjustable film properties of cellulose nanofiber and cellulose nanocrystal composites
Pritchard, C. Q., Funk, G., Owens, J., Stutz, S., Gooneie, A., Sapkota, J., … Bortner, M. J. (2022). Adjustable film properties of cellulose nanofiber and cellulose nanocrystal composites. Carbohydrate Polymers, 286, 119283 (9 pp.). https://doi.org/10.1016/j.carbpol.2022.119283
Single nanosized graphene/TiO<sub>x</sub> multi-shells on TiO<sub>2</sub> core via rapid-concomitant reaction pathway on metal oxide/polymer interface
Kato, K., Xin, Y., Vaucher, S., & Shirai, T. (2022). Single nanosized graphene/TiOx multi-shells on TiO2 core via rapid-concomitant reaction pathway on metal oxide/polymer interface. Scripta Materialia, 208, 114358 (6 pp.). https://doi.org/10.1016/j.scriptamat.2021.114358
The effect of the graded bilayer design on the strain depth profiles and microstructure of Cu/W nano-multilayers
Druzhinin, A. V., Lorenzin, G., Ariosa, D., Siol, S., Straumal, B. B., Janczak-Rusch, J., … Cancellieri, C. (2021). The effect of the graded bilayer design on the strain depth profiles and microstructure of Cu/W nano-multilayers. Materials and Design, 209, 110002 (11 pp.). https://doi.org/10.1016/j.matdes.2021.110002
Sputter deposition of transition-metal carbide films - a critical review from a chemical perspective
Jansson, U., & Lewin, E. (2013). Sputter deposition of transition-metal carbide films - a critical review from a chemical perspective. Thin Solid Films, 536, 1-24. https://doi.org/10.1016/j.tsf.2013.02.019
Smart hydrogel-microsphere embedded silver nanoparticle catalyst with high activity and selectivity for the reduction of 4-nitrophenol and azo dyes
Parida, D., Moreau, E., Nazir, R., Salmeia, K. A., Frison, R., Zhao, R., … Gaan, S. (2021). Smart hydrogel-microsphere embedded silver nanoparticle catalyst with high activity and selectivity for the reduction of 4-nitrophenol and azo dyes. Journal of Hazardous Materials, 416, 126237 (10 pp.). https://doi.org/10.1016/j.jhazmat.2021.126237
Contact resistance of Ti-Si-C-Ag and Ti-Si-C-Ag-Pd nanocomposite coatings
Sarius, N. G., Lauridsen, J., Lewin, E., Jansson, U., Högberg, H., Öberg, Å., … Hultman, L. (2012). Contact resistance of Ti-Si-C-Ag and Ti-Si-C-Ag-Pd nanocomposite coatings. Journal of Electronic Materials, 41(3), 560-567. https://doi.org/10.1007/s11664-011-1813-8
Nanocomposite of functional silver metal containing curcumin biomolecule model systems: protein BSA bioavailability
Shedge, A. A., Pansare, S. V., Khairkar, S. R., Chhatre, S. Y., Chakrabarti, S., Nagarkar, A. A., … Patil, V. R. (2020). Nanocomposite of functional silver metal containing curcumin biomolecule model systems: protein BSA bioavailability. Journal of Inorganic Biochemistry, 212, 111210 (7 pp.). https://doi.org/10.1016/j.jinorgbio.2020.111210
Antistatic fibers for high-visibilityworkwear: challenges of melt-spinning industrial fibers
Hufenus, R., Gooneie, A., Sebastian, T., Simonetti, P., Geiger, A., Parida, D., … Clemens, F. (2020). Antistatic fibers for high-visibilityworkwear: challenges of melt-spinning industrial fibers. Materials, 13(11), 2645 (21 pp.). https://doi.org/10.3390/ma13112645
Effect of the individual layer thickness on the transformation of Cu/W nano-multilayers into nanocomposites
Druzhinin, A. V., Ariosa, D., Siol, S., Ott, N., Straumal, B. B., Janczak-Rusch, J., … Cancellieri, C. (2019). Effect of the individual layer thickness on the transformation of Cu/W nano-multilayers into nanocomposites. Materialia, 7, 100400 (11 pp.). https://doi.org/10.1016/j.mtla.2019.100400
Enhanced virus filtration in hybrid membranes with MWCNT nanocomposite
Németh, Z., Szekeres, G. P., Schabikowski, M., Schrantz, K., Traber, J., Pronk, W., … Graule, T. (2019). Enhanced virus filtration in hybrid membranes with MWCNT nanocomposite. Royal Society Open Science, 6(1), 181294 (14 pp.). https://doi.org/10.1098/rsos.181294
Merging flexibility with superinsulation: machinable, nanofibrous pullulan-silica aerogel composites
Zhao, S., Emery, O., Wohlhauser, A., Koebel, M. M., Adlhart, C., & Malfait, W. J. (2018). Merging flexibility with superinsulation: machinable, nanofibrous pullulan-silica aerogel composites. Materials and Design, 160, 294-302. https://doi.org/10.1016/j.matdes.2018.09.010
Fabrication and evaluation of silica aerogel-epoxy nanocomposites: fracture and toughening mechanisms
Salimian, S., Malfait, W. J., Zadhoush, A., Talebi, Z., & Naeimirad, M. (2018). Fabrication and evaluation of silica aerogel-epoxy nanocomposites: fracture and toughening mechanisms. Theoretical and Applied Fracture Mechanics, 97, 156-164. https://doi.org/10.1016/j.tafmec.2018.08.007
A review on new mesostructured composite materials: part I. synthesis of polymer-mesoporous silica nanocomposite
Salimian, S., Zadhoush, A., & Mohammadi, A. (2018). A review on new mesostructured composite materials: part I. synthesis of polymer-mesoporous silica nanocomposite. Journal of Reinforced Plastics and Composites, 37(7), 441-459. https://doi.org/10.1177/0731684417752081
Reinforcement of polycaprolactone with microfibrillated lignocellulose
Herzele, S., Veigel, S., Liebner, F., Zimmermann, T., & Gindl-Altmutter, W. (2016). Reinforcement of polycaprolactone with microfibrillated lignocellulose. Industrial Crops and Products, 93, 302-308. https://doi.org/10.1016/j.indcrop.2015.12.051
High diffusion barrier and piezoelectric nanocomposites based on polyvinylidene fluoride-trifluoroethylene copolymer and hydrophobized clay
Dalle Vacche, S., Oliveira, F., Sereda, O., Neels, A., Dommann, A., Damjanovic, D., & Leterrier, Y. (2017). High diffusion barrier and piezoelectric nanocomposites based on polyvinylidene fluoride-trifluoroethylene copolymer and hydrophobized clay. Journal of Polymer Science. Part B: Polymer Physics, 55(24), 1828-1836. https://doi.org/10.1002/polb.24432
Correlation of epoxy material properties with the toughening effect of fullerene-like WS<SUB>2</SUB> nanoparticles
Haba, D., Brunner, A. J., Barbezatat, M., Spetter, D., Tremel, W., & Pinter, G. (2016). Correlation of epoxy material properties with the toughening effect of fullerene-like WS2 nanoparticles. European Polymer Journal, 84, 125-136. https://doi.org/10.1016/j.eurpolymj.2016.09.022
From occupied voids to nanoprecipitates: synthesis of skutterudite nanocomposites in situ
Eilertsen, J., Surace, Y., Balog, S., Sagarna, L., Rogl, G., Horky, J., … Weidenkaff, A. (2015). From occupied voids to nanoprecipitates: synthesis of skutterudite nanocomposites in situ. Zeitschrift für Anorganische und Allgemeine Chemie, 641(8-9), 1495-1502. https://doi.org/10.1002/zaac.201500137
Shaping radiation curable colloidal dispersions – from polymer/ceramic fibers and microspheres to gradient porosity ceramic bulk materials
de Hazan, Y., Wozniak, M., Heinecke, J., Müller, G., Märkl, V., & Graule, T. (2010). Shaping radiation curable colloidal dispersions – from polymer/ceramic fibers and microspheres to gradient porosity ceramic bulk materials. In T. Ohji, M. Singh, & S. Mathur (Eds.), Ceramic engineering and science proceedings: Vol. 31. Advanced processing and manufacturing technologies for structural and multifunctional materials IV (pp. 85-95). Wiley.
Nanostructured hard coatings - from nanocomposites to nanomultilayers
Patscheider, J., Zehnder, T., Matthey, J., & Diserens, M. (2004). Nanostructured hard coatings - from nanocomposites to nanomultilayers. In A. A. Voevodin, D. V. Shtansky, E. A. Levashov, & J. J. Moore (Eds.), NATO science series II: mathematics, physics and chemistry: Vol. 155. Nanostructured thin films and nanodispersion strengthened coatings (pp. 35-42). https://doi.org/10.1007/1-4020-2222-0