Active Filters

  • (-) Keywords ≠ analytical solution
  • (-) Funding (EC, SNSF) = Functional stretchable elastomers and devices
Search Results 1 - 11 of 11
  • RSS Feed
Select Page
Nitrile-functionalized poly(siloxane) as electrolytes for high-energy-density solid-state Li batteries
Okur, F., Sheima, Y., Zimmerli, C., Zhang, H., Helbling, P., Fäh, A., … Kravchyk, K. V. (2024). Nitrile-functionalized poly(siloxane) as electrolytes for high-energy-density solid-state Li batteries. ChemSusChem, 17(3), e202301285 (8 pp.). https://doi.org/10.1002/cssc.202301285
Synthesis of polysiloxane elastomers modified with sulfonyl side groups and their electromechanical response
Sheima, Y., Venkatesan, T. R., Frauenrath, H., & Opris, D. M. (2023). Synthesis of polysiloxane elastomers modified with sulfonyl side groups and their electromechanical response. Journal of Materials Chemistry C, 11(22), 7367-7376. https://doi.org/10.1039/d3tc00200d
Slot-die coating of an on-the-shelf polymer with increased dielectric permittivity for stack actuators
Iacob, M., Verma, A., Buchner, T., Sheima, Y., Katzschmann, R., & Opris, D. M. (2022). Slot-die coating of an on-the-shelf polymer with increased dielectric permittivity for stack actuators. ACS Applied Polymer Materials, 4(1), 150-157. https://doi.org/10.1021/acsapm.1c01135
Transient elastomers with high dielectric permittivity for actuators, sensors, and beyond
Sheima, Y., von Szczepanski, J., Danner, P. M., Künniger, T., Remhof, A., Frauenrath, H., & Opris, D. M. (2022). Transient elastomers with high dielectric permittivity for actuators, sensors, and beyond. ACS Applied Materials and Interfaces, 14(35), 40257-40265. https://doi.org/10.1021/acsami.2c05631
A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries
Fu, C., Iacob, M., Sheima, Y., Battaglia, C., Duchêne, L., Seidl, L., … Remhof, A. (2021). A highly elastic polysiloxane-based polymer electrolyte for all-solid-state lithium metal batteries. Journal of Materials Chemistry A, 9(19), 11794-11801. https://doi.org/10.1039/D1TA02689E
Polysiloxanes modified with different types and contents of polar groups: synthesis, structure, and thermal and dielectric properties
Sheima, Y., Yuts, Y., Frauenrath, H., & Opris, D. M. (2021). Polysiloxanes modified with different types and contents of polar groups: synthesis, structure, and thermal and dielectric properties. Macromolecules, 54(12), 5737-5749. https://doi.org/10.1021/acs.macromol.1c00362
Electrically driven artificial muscles using novel polysiloxane elastomers modified with nitroaniline push-pull moieties
Perju, E., Shova, S., & Opris, D. M. (2020). Electrically driven artificial muscles using novel polysiloxane elastomers modified with nitroaniline push-pull moieties. ACS Applied Materials and Interfaces, 12(20), 23432-23442. https://doi.org/10.1021/acsami.0c03692
Synthesis of solvent-free processable and on-demand cross-linkable dielectric elastomers for actuators
Caspari, P., Nüesch, F. A., & Opris, D. M. (2019). Synthesis of solvent-free processable and on-demand cross-linkable dielectric elastomers for actuators. Journal of Materials Chemistry C, 7(39), 12139-12150. https://doi.org/10.1039/C9TC03391B
Electrical energy generated by silicone elastomers filled with nanospring-carbon-nanotubes
Lee, Y. J., Caspari, P., Opris, D. M., Nüesch, F. A., Ham, S., Kim, J. H., … Choi, W. K. (2019). Electrical energy generated by silicone elastomers filled with nanospring-carbon-nanotubes. Journal of Materials Chemistry C, 7(12), 3535-3542. https://doi.org/10.1039/c8tc06460a
Artificial muscles: dielectric elastomers responsive to low voltages
Sheima, Y., Caspari, P., & Opris, D. M. (2019). Artificial muscles: dielectric elastomers responsive to low voltages. Macromolecular Rapid Communications, 40(16), 1900205 (8 pp.). https://doi.org/10.1002/marc.201900205
Polar elastomers as novel materials for electromechanical actuator applications
Opris, D. M. (2018). Polar elastomers as novel materials for electromechanical actuator applications. Advanced Materials, 30(5), 1703678 (23 pp.). https://doi.org/10.1002/adma.201703678