Active Filters

  • (-) Keywords ≠ analytical solution
  • (-) Journal = ACS Applied Materials and Interfaces
Search Results 1 - 20 of 147

Pages

  • RSS Feed
Select Page
Influence of Au, Pt, and C seed layers on lithium nucleation dynamics for anode-free solid-state batteries
Müller, A., Paravicini, L., Morzy, J., Krause, M., Casella, J., Osenciat, N., … Romanyuk, Y. E. (2024). Influence of Au, Pt, and C seed layers on lithium nucleation dynamics for anode-free solid-state batteries. ACS Applied Materials and Interfaces, 16(1), 695-703. https://doi.org/10.1021/acsami.3c14693
Garnet-based solid-state Li batteries with high-surface-area porous LLZO membranes
Zhang, H., Okur, F., Pant, B., Klimpel, M., Butenko, S., Karabay, D. T., … Kovalenko, M. V. (2024). Garnet-based solid-state Li batteries with high-surface-area porous LLZO membranes. ACS Applied Materials and Interfaces, 16(10), 12353-12362. https://doi.org/10.1021/acsami.3c14422
On-demand cross-linkable bottlebrush polymers for voltage-driven artificial muscles
Adeli, Y., Owusu, F., Nüesch, F. A., & Opris, D. M. (2023). On-demand cross-linkable bottlebrush polymers for voltage-driven artificial muscles. ACS Applied Materials and Interfaces, 15(16), 20410-20420. https://doi.org/10.1021/acsami.2c23026
Plasmonic nanofluids: enhancing photothermal gradients toward liquid robots
Bevione, M., Chiolerio, A., & Tagliabue, G. (2023). Plasmonic nanofluids: enhancing photothermal gradients toward liquid robots. ACS Applied Materials and Interfaces, 15(43), 50106-50115. https://doi.org/10.1021/acsami.3c06859
Phase behavior, self-assembly, and adhesive potential of cellulose nanocrystal-bovine serum albumin amyloid composites
De France, K. J., Kummer, N., Campioni, S., & Nyström, G. (2023). Phase behavior, self-assembly, and adhesive potential of cellulose nanocrystal-bovine serum albumin amyloid composites. ACS Applied Materials and Interfaces, 15(1), 1958-1968. https://doi.org/10.1021/acsami.2c14406
Oriented porous NASICON 3D framework via freeze-casting for sodium-metal batteries
Edison, E., Parrilli, A., Tervoort, E., Eliasson, H., & Niederberger, M. (2023). Oriented porous NASICON 3D framework via freeze-casting for sodium-metal batteries. ACS Applied Materials and Interfaces, 15(27), 32313-32319. https://doi.org/10.1021/acsami.3c03583
Mitigating first-cycle capacity losses in NMC811 via lithicone layers grown by molecular layer deposition
Egorov, K., Zhao, W., Knemeyer, K., Filippin, A. N., Giraldo, A., & Battaglia, C. (2023). Mitigating first-cycle capacity losses in NMC811 via lithicone layers grown by molecular layer deposition. ACS Applied Materials and Interfaces, 15(16), 20075-20080. https://doi.org/10.1021/acsami.2c23158
Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells
Kurisinkal Pious, J., Zwirner, Y., Lai, H., Olthof, S., Jeangros, Q., Gilshtein, E., … Fu, F. (2023). Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells. ACS Applied Materials and Interfaces, 15(7), 10151-10157. https://doi.org/10.1021/acsami.2c19124
Nanoanalytical insights into the stability, intracellular fate, and biotransformation of metal-organic frameworks
Neuer, A. L., Geck, D., Gogos, A., Kissling, V. M., Balfourier, A., & Herrmann, I. K. (2023). Nanoanalytical insights into the stability, intracellular fate, and biotransformation of metal-organic frameworks. ACS Applied Materials and Interfaces, 15(32), 38367-38380. https://doi.org/10.1021/acsami.3c08818
<em>In situ </em>observation of chemically induced protein denaturation at solvated interfaces
Nirmalraj, P. N., Rossell, M. D., Dachraoui, W., Thompson, D., & Mayer, M. (2023). In situ observation of chemically induced protein denaturation at solvated interfaces. ACS Applied Materials and Interfaces, 15(41), 48015-48026. https://doi.org/10.1021/acsami.3c10510
Accurate transfer of individual nanoparticles onto single photonic nanostructures
Redolat, J., Camarena-Pérez, M., Griol, A., Kovylina, M., Xomalis, A., Baumberg, J. J., … Pinilla-Cienfuegos, E. (2023). Accurate transfer of individual nanoparticles onto single photonic nanostructures. ACS Applied Materials and Interfaces, 15(2), 3558-3565. https://doi.org/10.1021/acsami.2c13633
Combined theoretical and experimental study of the Moiré dislocation network at the SrTiO<sub>3</sub>-(La,Sr)(Al,Ta)O<sub>3</sub> interface
Ricca, C., Skoropata, E., Rossell, M. D., Erni, R., Staub, U., & Aschauer, U. (2023). Combined theoretical and experimental study of the Moiré dislocation network at the SrTiO3-(La,Sr)(Al,Ta)O3 interface. ACS Applied Materials and Interfaces, 15(46), 53678-53687. https://doi.org/10.1021/acsami.3c10958
In situ investigation of <em>Pseudomonas aeruginosa</em> biofilm development: interplay between flow, growth medium, and mechanical properties of substrate
Straub, H., Zuber, F., Eberl, L., Maniura-Weber, K., & Ren, Q. (2023). In situ investigation of Pseudomonas aeruginosa biofilm development: interplay between flow, growth medium, and mechanical properties of substrate. ACS Applied Materials and Interfaces, 15(2), 2781-2791. https://doi.org/10.1021/acsami.2c20693
Origin of the critical thickness in improper ferroelectric thin films
Vogel, A., Ruiz Caridad, A., Nordlander, J., Sarott, M. F., Meier, Q. N., Erni, R., … Rossell, M. D. (2023). Origin of the critical thickness in improper ferroelectric thin films. ACS Applied Materials and Interfaces, 15(14), 18482-18492. https://doi.org/10.1021/acsami.3c00412
Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12 </sub>protonation as a means to generate porous/dense/porous-structured electrolytes for all-solid-state lithium-metal batteries
Grissa, R., Seidl, L., Dachraoui, W., Sauter, U., & Battaglia, C. (2022). Li7La3Zr2O12 protonation as a means to generate porous/dense/porous-structured electrolytes for all-solid-state lithium-metal batteries. ACS Applied Materials and Interfaces, 14(40), 46001-46009. https://doi.org/10.1021/acsami.2c11375
Robust antibacterial activity of xanthan-gum-stabilized and patterned CeO<sub>2- x</sub>-TiO<sub>2</sub> antifog films
Guo, F., Pan, F., Zhang, W., Liu, T., Zuber, F., Zhang, X., … Ren, Q. (2022). Robust antibacterial activity of xanthan-gum-stabilized and patterned CeO2- x-TiO2 antifog films. ACS Applied Materials and Interfaces, 14(39), 44158-44172. https://doi.org/10.1021/acsami.2c11968
Compositional variation in FAPb<sub>1- x</sub>Sn<sub>x</sub>I<sub>3</sub>and its impact on the electronic structure: a combined density functional theory and experimental study
Kahmann, S., Chen, Z., Hordiichuk, O., Nazarenko, O., Shao, S., Kovalenko, M. V., … Loi, M. A. (2022). Compositional variation in FAPb1- xSnxI3and its impact on the electronic structure: a combined density functional theory and experimental study. ACS Applied Materials and Interfaces, 14(30), 34253-34261. https://doi.org/10.1021/acsami.2c00889
Intercellular matrix infiltration improves the wet strength of delignified wood composites
Koch, S. M., Pillon, M., Keplinger, T., Dreimol, C. H., Weinkötz, S., & Burgert, I. (2022). Intercellular matrix infiltration improves the wet strength of delignified wood composites. ACS Applied Materials and Interfaces, 14(27), 31216-31224. https://doi.org/10.1021/acsami.2c04014
Structure-property relationship based on the amino acid composition of recombinant spider silk proteins for potential biomedical applications
Lentz, S., Trossmann, V. T., Borkner, C. B., Beyersdorfer, V., Rottmar, M., & Scheibel, T. (2022). Structure-property relationship based on the amino acid composition of recombinant spider silk proteins for potential biomedical applications. ACS Applied Materials and Interfaces, 14(28), 31751-31766. https://doi.org/10.1021/acsami.2c09590
Atomistic assessment of melting point depression and enhanced interfacial diffusion of Cu in confinement with AlN
Müller, Y. L., Jeurgens, L. P. H., Antušek, A., & Turlo, V. (2022). Atomistic assessment of melting point depression and enhanced interfacial diffusion of Cu in confinement with AlN. ACS Applied Materials and Interfaces, 14(22), 26099-26115. https://doi.org/10.1021/acsami.2c01347
 

Pages