Active Filters

  • (-) Keywords ≠ asphalt binder
  • (-) Empa Laboratories = 403 Particles-Biology Interactions
Search Results 1 - 20 of 463

Pages

  • RSS Feed
Select Page
Risks and opportunities of nanomaterial exposure during pregnancy: from placental uptake and translocation to fetal consequences
Aengenheister, L. (2018). Risks and opportunities of nanomaterial exposure during pregnancy: from placental uptake and translocation to fetal consequences [Doctoral dissertation, ETH Zurich].
Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models
Aengenheister, L., Batbajar Dugershaw, B., Manser, P., Wichser, A., Schoenenberger, R., Wick, P., … Buerki-Thurnherr, T. (2019). Investigating the accumulation and translocation of titanium dioxide nanoparticles with different surface modifications in static and dynamic human placental transfer models. European Journal of Pharmaceutics and Biopharmaceutics, 142, 488-497. https://doi.org/10.1016/j.ejpb.2019.07.018
Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models
Aengenheister, L., Dietrich, D., Sadeghpour, A., Manser, P., Diener, L., Wichser, A., … Buerki-Thurnherr, T. (2018). Gold nanoparticle distribution in advanced in vitro and ex vivo human placental barrier models. Journal of Nanobiotechnology, 16(1), 79 (16 pp.). https://doi.org/10.1186/s12951-018-0406-6
Research on nanoparticles in human perfused placenta: state of the art and perspectives
Aengenheister, L., Favaro, R. R., Morales-Prieto, D. M., Furer, L. A., Gruber, M., Wadsack, C., … Buerki-Thurnherr, T. (2021). Research on nanoparticles in human perfused placenta: state of the art and perspectives. Placenta, 104, 199-207. https://doi.org/10.1016/j.placenta.2020.12.014
An advanced human <i>in vitro</i> co-culture model for translocation studies across the placental barrier
Aengenheister, L., Keevend, K., Muoth, C., Schönenberger, R., Diener, L., Wick, P., & Buerki-Thurnherr, T. (2018). An advanced human in vitro co-culture model for translocation studies across the placental barrier. Scientific Reports, 8(1), 5388 (12 pp.). https://doi.org/10.1038/s41598-018-23410-6
In vitro model for the peripheral nervous system
Agabi, O., Weigel, S., Früh, H., Stoop, R., & Bruinink, A. (2008). In vitro model for the peripheral nervous system. In A. Stett (Ed.), Vol. 5. MEA meeting 2008. Proceedings. July 8–11, 2008, Reutlingen, Germany 6th international meeting on substrate-integrated micro electrode arrays (pp. 219-220). BIOPRO Baden-Württemberg GmbH.
Surface modification of thermoplastic polyurethane in order to enhance reactivity and avoid cell adhesion
Alves, P., Kaiser, J. P., Haack, J., Salk, N., Bruinink, A., de Sousa, H. C., & Gil, M. H. (2009). Surface modification of thermoplastic polyurethane in order to enhance reactivity and avoid cell adhesion. Colloid and Polymer Science, 287(12), 1469-1474. https://doi.org/10.1007/s00396-009-2116-y
Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion
Alves, P., Ferreira, P., Kaiser, J. P., Salk, N., Bruinink, A., de Sousa, H. C., & Gil, M. H. (2013). Surface grafting of carboxylic groups onto thermoplastic polyurethanes to reduce cell adhesion. Applied Surface Science, 283, 744-750. https://doi.org/10.1016/j.apsusc.2013.07.011
Improving cell adhesion: development of a biosensor for cell behaviour monitoring by surface grafting of sulfonic groups onto a thermoplastic polyurethane
Alves, P., Pinto, S., Ferreira, P., Kaiser, J. P., Bruinink, A., de Sousa, H. C., & Gil, M. H. (2014). Improving cell adhesion: development of a biosensor for cell behaviour monitoring by surface grafting of sulfonic groups onto a thermoplastic polyurethane. Journal of Materials Science: Materials in Medicine, 25(8), 2017-2026. https://doi.org/10.1007/s10856-014-5233-1
Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion
Alves, P., Pinto, S., Kaiser, J. P., Bruinink, A., de Sousa, H. C., & Gil, M. H. (2011). Surface grafting of a thermoplastic polyurethane with methacrylic acid by previous plasma surface activation and by ultraviolet irradiation to reduce cell adhesion. Colloids and Surfaces B: Biointerfaces, 82(2), 371-377. https://doi.org/10.1016/j.colsurfb.2010.09.021
Surface modification and characterization of thermoplastic polyurethane
Alves, P., Coelho, J. F. J., Haack, J., Rota, A., Bruinink, A., & Gil, M. H. (2009). Surface modification and characterization of thermoplastic polyurethane. European Polymer Journal, 45(5), 1412-1419. https://doi.org/10.1016/j.eurpolymj.2009.02.011
Effects of subtoxic concentrations of TiO<SUB>2</SUB> and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production
Andersson-Willman, B., Gehrmann, U., Cansu, Z., Buerki-Thurnherr, T., Krug, H. F., Gabrielsson, S., & Scheynius, A. (2012). Effects of subtoxic concentrations of TiO2 and ZnO nanoparticles on human lymphocytes, dendritic cells and exosome production. Toxicology and Applied Pharmacology, 264(1), 94-103. https://doi.org/10.1016/j.taap.2012.07.021
Nano-analytical characterization of endogenous minerals in healthy placental tissue: mineral distribution, composition and ultrastructure
Anthis, A. H. C., Tsolaki, E., Didierlaurent, L., Staubli, S., Zboray, R., Neels, A., … Herrmann, I. K. (2019). Nano-analytical characterization of endogenous minerals in healthy placental tissue: mineral distribution, composition and ultrastructure. Analyst, 144, 6850-6857. https://doi.org/10.1039/C9AN01312A
Tailoring the colloidal stability, magnetic separability and  cytocompatibility of high-capacity magnetic anion exchangers
Anthis, A. H. C., Matter, M. T., Keevend, K., Gerken, L. R. H., Scheibler, S., Doswald, S., … Herrmann, I. K. (2019). Tailoring the colloidal stability, magnetic separability and  cytocompatibility of high-capacity magnetic anion exchangers. ACS Applied Materials and Interfaces, 11(51), 48341-48351. https://doi.org/10.1021/acsami.9b16619
Sutureless gastrointestinal anastomoses
Anthis, A. H. C., Schlegel, A. A., Hartel, M., & Herrmann, I. K. (2022). Sutureless gastrointestinal anastomoses. Nature Biomedical Engineering, 6, 1089-1091. https://doi.org/10.1038/s41551-022-00900-7
Chemically stable, strongly adhesive sealant patch for intestinal anastomotic leakage prevention
Anthis, A. H. C., Hu, X., Matter, M. T., Neuer, A. L., Wei, K., Schlegel, A. A., … Herrmann, I. K. (2021). Chemically stable, strongly adhesive sealant patch for intestinal anastomotic leakage prevention. Advanced Functional Materials, 31(16), 2007099 (12 pp.). https://doi.org/10.1002/adfm.202007099
Reversible mechanical contraception and endometriosis treatment using stimuli‐responsive hydrogels
Anthis, A. H. C., Kilchenmann, S., Murdeu, M., LeValley, P. J., Wolf, M., Meyer, C., … Herrmann, I. K. (2024). Reversible mechanical contraception and endometriosis treatment using stimuli‐responsive hydrogels. Advanced Materials. https://doi.org/10.1002/adma.202310301
Modular stimuli-responsive hydrogel sealants for early gastrointestinal leak detection and containment
Anthis, A. H. C., Abundo, M. P., Neuer, A. L., Tsolaki, E., Rosendorf, J., Rduch, T., … Herrmann, I. K. (2022). Modular stimuli-responsive hydrogel sealants for early gastrointestinal leak detection and containment. Nature Communications, 13(1), 7311 (15 pp.). https://doi.org/10.1038/s41467-022-34272-y
Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial
Bachmatiuk, A., Mendes, R. G., Hirsch, C., Jähne, C., Lohe, M. R., Grothe, J., … Rümmeli, M. H. (2013). Few-layer graphene shells and nonmagnetic encapsulates: a versatile and nontoxic carbon nanomaterial. ACS Nano, 7(12), 10552-10562. https://doi.org/10.1021/nn4051562
Multifunctional nanocomposite plasma coatings: enabling new biomaterials applications
Balazs, D., Shen, D., Lischer, S., Grieder, K., Fortunato, G., Hossain, M. M., … Heuberger, M. (2008). Multifunctional nanocomposite plasma coatings: enabling new biomaterials applications. In Materials Research Society Symposium Proceedings: Vol. 1056. Nanophase and nanocomposite materials V (pp. 46-47). Materials Research Society.
 

Pages