Active Filters

  • (-) Keywords ≠ capillary absorption
  • (-) Keywords = fracture toughness
Search Results 1 - 20 of 50
Select Page
High-power-density sputtering of industrial-scale targets: Case study of (Al,Cr)N
Klimashin, F. F., Klusoň, J., Učík, M., Žemlička, R., Jílek, M., Lümkemann, A., … Edwards, T. E. J. (2024). High-power-density sputtering of industrial-scale targets: Case study of (Al,Cr)N. Materials and Design, 237, 112553 (12 pp.). https://doi.org/10.1016/j.matdes.2023.112553
The influence of aspect ratio on the determination of tearing energy in mode I fracture tests
Kahle, E., Ehret, A. E., & Mazza, E. (2023). The influence of aspect ratio on the determination of tearing energy in mode I fracture tests. Engineering Fracture Mechanics, 287, 109315 (17 pp.). https://doi.org/10.1016/j.engfracmech.2023.109315
On the investigation of quasi-static crack resistance of thermoplastic tape layered composites with multiple delaminations: approaches for quantification
Khudiakova, A., Brunner, A. J., Wolfahrt, M., Wettemann, T., Godec, D., & Pinter, G. (2021). On the investigation of quasi-static crack resistance of thermoplastic tape layered composites with multiple delaminations: approaches for quantification. Composites Part A: Applied Science and Manufacturing, 149, 106484 (10 pp.). https://doi.org/10.1016/j.compositesa.2021.106484
Strength analysis and stress-strain deformation behavior of 3 mol% Y-TZP and 21 wt.% Al<sub>2</sub>O<sub>3</sub>-3 mol% Y-TZP
Vladislavova, L., Smolorz, T., Orlovskaya, N., Lugovy, M., Reece, M. J., Kӧbel, S., … Blugan, G. (2021). Strength analysis and stress-strain deformation behavior of 3 mol% Y-TZP and 21 wt.% Al2O3-3 mol% Y-TZP. Materials, 14(14), 3903 (20 pp.). https://doi.org/10.3390/ma14143903
Relating fracture toughness to micro-pillar compression response for a laser powder bed additive manufactured bulk metallic glass
Best, J. P., Ast, J., Li, B., Stolpe, M., Busch, R., Yang, F., … Kruzic, J. J. (2020). Relating fracture toughness to micro-pillar compression response for a laser powder bed additive manufactured bulk metallic glass. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 770, 138535 (8 pp.). https://doi.org/10.1016/j.msea.2019.138535
Fracture toughness determination of fused silica by cube corner indentation cracking and pillar splitting
Bruns, S., Petho, L., Minnert, C., Michler, J., & Durst, K. (2020). Fracture toughness determination of fused silica by cube corner indentation cracking and pillar splitting. Materials and Design, 186, 108311 (8 pp.). https://doi.org/10.1016/j.matdes.2019.108311
Delamination resistance of GFRP‐epoxy rods with nanoparticle‐ and microparticle‐modified matrix and its correlation with the fracture properties of epoxy nanocomposites
Burda, I., Barbezat, M., & Brunner, A. J. (2020). Delamination resistance of GFRP‐epoxy rods with nanoparticle‐ and microparticle‐modified matrix and its correlation with the fracture properties of epoxy nanocomposites. Fatigue and Fracture of Engineering Materials and Structures, 43, 292-307. https://doi.org/10.1111/ffe.13122
A review of experimental approaches to fracture toughness evaluation at the micro-scale
Ast, J., Ghidelli, M., Durst, K., Göken, M., Sebastiani, M., & Korsunsky, A. M. (2019). A review of experimental approaches to fracture toughness evaluation at the micro-scale. Materials and Design, 173, 107762 (24 pp.). https://doi.org/10.1016/j.matdes.2019.107762
Nanostructured NbMoTaW high entropy alloy thin films: high strength and enhanced fracture toughness
Xiao, Y., Zou, Y., Ma, H., Sologubenko, A. S., Maeder, X., Spolenak, R., & Wheeler, J. M. (2019). Nanostructured NbMoTaW high entropy alloy thin films: high strength and enhanced fracture toughness. Scripta Materialia, 168, 51-55. https://doi.org/10.1016/j.scriptamat.2019.04.011
The effect of clamping conditions on tearing energy estimation for highly stretchable materials
Bernardi, L., Mazza, E., & Ehret, A. E. (2018). The effect of clamping conditions on tearing energy estimation for highly stretchable materials. Engineering Fracture Mechanics, 188, 300-308. https://doi.org/10.1016/j.engfracmech.2017.08.035
Improved mechanical properties of bitumen modified with acetylated cellulose fibers
Desseaux, S., dos Santos, S., Geiger, T., Tingaut, P., Zimmermann, T., Partl, M. N., & Poulikakos, L. D. (2018). Improved mechanical properties of bitumen modified with acetylated cellulose fibers. Composites Part B: Engineering, 140, 139-144. https://doi.org/10.1016/j.compositesb.2017.12.010
Effect of crumb rubber production technology on performance of modified bitumen
Loderer, C., Partl, M. N., & Poulikakos, L. D. (2018). Effect of crumb rubber production technology on performance of modified bitumen. Construction and Building Materials, 191, 1159-1171. https://doi.org/10.1016/j.conbuildmat.2018.10.046
A new push-pull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension
Schwiedrzik, J. J., Ast, J., Pethö, L., Maeder, X., & Michler, J. (2018). A new push-pull sample design for microscale mode 1 fracture toughness measurements under uniaxial tension. Fatigue and Fracture of Engineering Materials and Structures, 41(5), 991-1001. https://doi.org/10.1111/ffe.12741
Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation
Best, J. P., Zechner, J., Wheeler, J. M., Schoeppner, R., Morstein, M., & Michler, J. (2016). Small-scale fracture toughness of ceramic thin films: the effects of specimen geometry, ion beam notching and high temperature on chromium nitride toughness evaluation. Philosophical Magazine, 96(32-34), 3552-3569. https://doi.org/10.1080/14786435.2016.1223891
Microscale fracture behavior of single crystal silicon beams at elevated temperatures
Jaya, B. N., Wheeler, J. M., Wehrs, J., Best, J. P., Soler, R., Michler, J., … Dehm, G. (2016). Microscale fracture behavior of single crystal silicon beams at elevated temperatures. Nano Letters, 16(12), 7597-7603. https://doi.org/10.1021/acs.nanolett.6b03461
Mechanical properties of tough plasma treated flax fibre thermoplastic composites
Woigk, W., Rion, J., Hegemann, D., Fuentes, C., v. Vuure, A. W., Masania, K., & Dransfeld, C. (2016). Mechanical properties of tough plasma treated flax fibre thermoplastic composites (p. (9 pp.). Presented at the ECCM17 - 17th European conference on composite materials. .
Fracture mechanics characterization of polymer composites for aerospace applications
Brunner, A. J. (2015). Fracture mechanics characterization of polymer composites for aerospace applications. In P. E. Irving & C. Soutis (Eds.), Woodhead Publishing Series in Composites Science and Engineering: Number 50. Polymer composites in the aerospace industry (pp. 191-230). https://doi.org/10.1016/B978-0-85709-523-7.00008-6
Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells
Fleischhauer, F., Terner, M., Bermejo, R., Danzer, R., Mai, A., Graule, T., & Kuebler, J. (2015). Fracture toughness and strength distribution at room temperature of zirconia tapes used for electrolyte supported solid oxide fuel cells. Journal of Power Sources, 275, 217-226. https://doi.org/10.1016/j.jpowsour.2014.10.083
Microscale resolution fracture toughness profiling at the zirconia-porcelain interface in dental prostheses
Lunt, A. J. G., Mohanty, G., Neo, T. K., Michler, J., & Korsunsky, A. M. (2015). Microscale resolution fracture toughness profiling at the zirconia-porcelain interface in dental prostheses. In B. J. Eggleton & S. Palomba (Eds.), Proceedings of SPIE: Vol. 9668. Micro and nano materials, devices, and systems (p. 96685S (11 pp.). https://doi.org/10.1117/12.2199217
Non-intuitive fracture pattern of a failed crane-hanger: a fracture mechanics-based explanation
Piskoty, G., Michel, S. A., Valet, S., Koster, M., Sauder, M., & Schindler, H. J. (2015). Non-intuitive fracture pattern of a failed crane-hanger: a fracture mechanics-based explanation. Engineering Failure Analysis, 56, 307-319. https://doi.org/10.1016/j.engfailanal.2015.01.012