Active Filters

  • (-) Keywords ≠ drone detection
  • (-) Empa Laboratories = 501 Materials for Energy Conversion
Search Results 1 - 20 of 574

Pages

  • RSS Feed
Select Page
Synthesis and properties of oxynitrides (La,Sr)Ti(O,N)<SUB>3</SUB> thin films
Aguiar, R., Weidenkaff, A., Schneider, C. W., Reller, A., & Ebbinghaus, S. G. (2007). Synthesis and properties of oxynitrides (La,Sr)Ti(O,N)3 thin films. Progress in Solid State Chemistry, 35(2-4), 291-298. https://doi.org/10.1016/j.progsolidstchem.2007.01.033
Physical properties of (La,Sr)Ti(O,N)<SUB>3</SUB> thin films grown by pulsed laser deposition
Aguiar, R., Logvinovich, D., Weidenkaff, A., Karl, H., Schneider, C. W., Reller, A., & Ebbinghaus, S. G. (2008). Physical properties of (La,Sr)Ti(O,N)3 thin films grown by pulsed laser deposition. Materials Research Bulletin, 43(6), 1376-1383. https://doi.org/10.1016/j.materresbull.2007.06.049
Advances in oxynitride perovskites: synthesis and photocatalytic applications
Aguiar, R., Lee, Y., Domen, K., Kalytta, A., Logvinovich, D., Weidenkaff, A., … Ebbinghaus, S. G. (2007). Advances in oxynitride perovskites: synthesis and photocatalytic applications. In P. B. Lin (Ed.), Ceramic materials. Research trends (pp. 111-137). Nova Science Publishers.
Thermal oxidation of oxynitride perovskites in different atmospheres
Aguiar, R., Logvinovich, D., Weidenkaff, A., Reller, A., & Ebbinghaus, S. G. (2008). Thermal oxidation of oxynitride perovskites in different atmospheres. Thermochimica Acta, 471(1-2), 55-60. https://doi.org/10.1016/j.tca.2008.02.021
The vast colour spectrum of ternary metal oxynitride pigments
Aguiar, R., Logvinovich, D., Weidenkaff, A., Rachel, A., Reller, A., & Ebbinghaus, S. G. (2008). The vast colour spectrum of ternary metal oxynitride pigments. Dyes and Pigments, 76(1), 70-75. https://doi.org/10.1016/j.dyepig.2006.08.029
Photocatalytic decomposition of acetone using LaTi(O,N)<SUB>3</SUB> nanoparticles under visible light irradiation
Aguiar, R., Kalytta, A., Reller, A., Weidenkaff, A., & Ebbinghaus, S. G. (2008). Photocatalytic decomposition of acetone using LaTi(O,N)3 nanoparticles under visible light irradiation. Journal of Materials Chemistry, 18, 4260-4265. https://doi.org/10.1039/b806794e
Microwave plasma nitridation of SrTiO<SUB>3</SUB>: a quantitative EELS, TEM, and STEM-HAADF analysis of the SrTiO<SUB>3−</SUB><I><SUB>x</SUB></I>N<I><SUB>y</SUB></I> growth and the structural evolution
Aguirre, M. H., Shkabko, A., & Weidenkaff, A. (2010). Microwave plasma nitridation of SrTiO3: a quantitative EELS, TEM, and STEM-HAADF analysis of the SrTiO3−xNy growth and the structural evolution. Crystal Growth and Design, 10(8), 3562-3567. https://doi.org/10.1021/cg100474x
Synthesis, crystal structure, and microstructure analysis of perovskite-type compounds LnCo<SUB>0.95</SUB>Ni<SUB>0.05</SUB>O<SUB>3</SUB> (Ln = La, Pr, Nd, Sm, Gd, and Dy)
Aguirre, M. H., Robert, R., Logvinovich, D., & Weidenkaff, A. (2007). Synthesis, crystal structure, and microstructure analysis of perovskite-type compounds LnCo0.95Ni0.05O3 (Ln = La, Pr, Nd, Sm, Gd, and Dy). Inorganic Chemistry, 46(7), 2744-2750. https://doi.org/10.1021/ic0623821
Structure, microstructure, and high-temperature transport properties of La<SUB>1-<I>x</I></SUB>Ca<SUB><I>x</I></SUB>MnO<SUB>3-<I>δ</I></SUB> thin films and polycrystalline bulk materials
Aguirre, M. H., Canulescu, S., Robert, R., Homazava, N., Logvinovich, D., Bocher, L., … Weidenkaff, A. (2008). Structure, microstructure, and high-temperature transport properties of La1-xCaxMnO3-δ thin films and polycrystalline bulk materials. Journal of Applied Physics, 103(1), 013703 (6 pp.). https://doi.org/10.1063/1.2826950
High-temperature thermoelectric properties of Sr<SUB>2</SUB>RuYO<SUB>6</SUB> and Sr<SUB>2</SUB>RuErO<SUB>6</SUB> double perovskites influenced by structure and microstructure
Aguirre, M. H., Logvinovich, D., Bocher, L., Robert, R., Ebbinghaus, S. G., & Weidenkaff, A. (2009). High-temperature thermoelectric properties of Sr2RuYO6 and Sr2RuErO6 double perovskites influenced by structure and microstructure. Acta Materialia, 57(1), 108-115. https://doi.org/10.1016/j.actamat.2008.09.003
High-temperature thermoelectric properties of W-substituted CaMnO<small><sub>3</sub></small>
Alfaruq, D. S., Eilertsen, J., Thiel, P., Aguirre, M. H., Otal, E., Populoh, S., … Weidenkaff, A. (2013). High-temperature thermoelectric properties of W-substituted CaMnO3. In G. S. Nolas, Y. Grin, D. Johnson, & A. Thompson (Eds.), Materials research society symposium proceedings: Vol. 1490. Symposium B – thermoelectric materials research and device development for power conversion and refrigeration (pp. 3-8). https://doi.org/10.1557/opl.2013.85
Thermoelectric properties of CaMnO<sub>3</sub> films obtained by soft chemistry synthesis
Alfaruq, D. S., Otal, E. H., Aguirre, M. H., Populoh, S., & Weidenkaff, A. (2012). Thermoelectric properties of CaMnO3 films obtained by soft chemistry synthesis. Journal of Materials Research, 27(7), 985-990. https://doi.org/10.1557/jmr.2012.63
Crystal growth and thermoelectric properties of CaMn<SUB>0.98</SUB>Nb<SUB>0.02</SUB>O<SUB>3−<I>δ</I></SUB>
Alfaruq, D. S., Aguirre, M. H., Otal, E. H., Populoh, S., Karvonen, L., Yoon, S., … Weidenkaff, A. (2013). Crystal growth and thermoelectric properties of CaMn0.98Nb0.02O3−δ. Journal of Crystal Growth, 377, 170-177. https://doi.org/10.1016/j.jcrysgro.2013.05.020
Invited article: a round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co<SUB>0.97</SUB>Ni<SUB>0.03</SUB>Sb<SUB>3</SUB>
Alleno, E., Bérardan, D., Byl, C., Candolfi, C., Daou, R., Decourt, R., … Soulier, M. (2015). Invited article: a round robin test of the uncertainty on the measurement of the thermoelectric dimensionless figure of merit of Co0.97Ni0.03Sb3. Review of Scientific Instruments, 86(1), 11301 (9 pp.). https://doi.org/10.1063/1.4905250
Photocatalytic abatement of ammonia in nitrogen-containing effluents
Altomare, M., Chiarello, G. L., Costa, A., Guarino, M., & Selli, E. (2012). Photocatalytic abatement of ammonia in nitrogen-containing effluents. Chemical Engineering Journal, 191, 394-401. https://doi.org/10.1016/j.cej.2012.03.037
Pathways to electrochemical solar-hydrogen technologies
Ardo, S., Fernandez Rivas, D., Modestino, M. A., Schulze Greiving, V., Abdi, F. F., Alarcon Llado, E., … Westerik, P. (2018). Pathways to electrochemical solar-hydrogen technologies. Energy and Environmental Science, 11(10), 2768-2783. https://doi.org/10.1039/C7EE03639F
The intermetallic compound ZnPd and its role in methanol steam reforming
Armbrüster, M., Behrens, M., Föttinger, K., Friedrich, M., Gaudry, É., Matam, S. K., & Sharma, H. R. (2013). The intermetallic compound ZnPd and its role in methanol steam reforming. Catalysis Reviews, 55(3), 289-367. https://doi.org/10.1080/01614940.2013.796192
Hydroborate-based solid electrolytes for all-solid-state batteries
Asakura, R., Remhof, A., & Battaglia, C. (2022). Hydroborate-based solid electrolytes for all-solid-state batteries. In R. K. Gupta (Ed.), ACS symposium series: Vol. 1413. Solid state batteries. Volume 1: emerging materials and applications (pp. 353-393). https://doi.org/10.1021/bk-2022-1413.ch014
Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries
Asakura, R., Duchêne, L., Payandeh, S., Rentsch, D., Hagemann, H., Battaglia, C., & Remhof, A. (2021). Thermal and electrochemical interface compatibility of a hydroborate solid electrolyte with 3 V-class cathodes for all-solid-state sodium batteries. ACS Applied Materials and Interfaces, 13, 55319-55328. https://doi.org/10.1021/acsami.1c15246
4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface
Asakura, R., Reber, D., Duchêne, L., Payandeh, S., Remhof, A., Hagemann, H., & Battaglia, C. (2020). 4 V room-temperature all-solid-state sodium battery enabled by a passivating cathode/hydroborate solid electrolyte interface. Energy and Environmental Science, 13(12), 5048-5058. https://doi.org/10.1039/D0EE01569E
 

Pages