Active Filters

  • (-) Keywords ≠ human factors
  • (-) Keywords = nanocomposites
Search Results 1 - 20 of 58
Select Page
Oriented nanocomposites of ultrahigh-molecular-weight polyethylene and gold
Heffels, W., Bastiaansen, C., Caseri, W., & Smith, P. (2000). Oriented nanocomposites of ultrahigh-molecular-weight polyethylene and gold. Molecular Crystals and Liquid Crystals Science and Technology. Section A. Molecular Crystals and Liquid Crystals, 353, 191-201. https://doi.org/10.1080/10587250008025659
Synthesis of amine-cured, epoxy-layered silicate nanocomposites: the influence of the silicate surface modification on the properties
Kornmann, X., Thomann, R., Mülhaupt, R., Finter, J., & Berglund, L. (2002). Synthesis of amine-cured, epoxy-layered silicate nanocomposites: the influence of the silicate surface modification on the properties. Journal of Applied Polymer Science, 86(10), 2643-2652. https://doi.org/10.1002/app.11279
Tribological properties of nanocomposite TiC/DLC coatings
Kollo, L. (2003). Tribological properties of nanocomposite TiC/DLC coatings [Master thesis].
Wear protective coatings consisting of TiC-SiC-a-C:H deposited by magnetron sputtering
Zehnder, T., Matthey, J., Schwaller, P., Klein, A., Steinmann, P. A., & Patscheider, J. (2003). Wear protective coatings consisting of TiC-SiC-a-C:H deposited by magnetron sputtering. Surface and Coatings Technology, 163-164, 238-244. https://doi.org/10.1016/S0257-8972(02)00477-2
Nanocomposite hard coatings for wear protection
Patscheider, J. (2003). Nanocomposite hard coatings for wear protection. MRS Bulletin, 28(3), 180-183. https://doi.org/10.1557/mrs2003.59
Non-agglomerated dry silica nanoparticles
Mueller, R., Kammler, H. K., Pratsinis, S. E., Vital, A., Beaucage, G., & Burtscher, P. (2004). Non-agglomerated dry silica nanoparticles. Powder Technology, 140(1-2), 40-48. https://doi.org/10.1016/j.powtec.2004.01.004
Multi-functional nanocomposite plasma coatings - enabling new applications in biomaterials
Balazs, D. J., Hossain, M. M., Brombacher, E., Fortunato, G., Körner, E., & Hegemann, D. (2007). Multi-functional nanocomposite plasma coatings - enabling new applications in biomaterials. Plasma Processes and Polymers, 4(S1), S380-S385. https://doi.org/10.1002/ppap.200731004
Cellulose fibrils in wood cell walls and their potential for technical applications
Zimmermann, T. (2007). Cellulose fibrils in wood cell walls and their potential for technical applications. In U. Schmitt (Ed.), Mitteilungen der Bundesforschungsanstalt für Forst- und Holzwirtschaft: Vol. 223. The plant cell wall - recent advances and new perspectives. Proceedings of the 2nd New Zealand-German workshop on plant cell walls, Hamburg, 4 - 6 October 2006 (pp. 137-151). Wiedebusch.
Microstructure and properties of carbon nanotube/zirconia composite
Duszová, A., Dusza, J., Tomášek, K., Blugan, G., & Kuebler, J. (2008). Microstructure and properties of carbon nanotube/zirconia composite. Journal of the European Ceramic Society, 28(5), 1023-1027. https://doi.org/10.1016/j.jeurceramsoc.2007.09.011
Nanostructured surface modification of microporous ceramics for efficient virus filtration
Wegmann, M., Michen, B., & Graule, T. (2008). Nanostructured surface modification of microporous ceramics for efficient virus filtration. Journal of the European Ceramic Society, 28(8), 1603-1612. https://doi.org/10.1016/j.jeurceramsoc.2007.11.002
Luminescent and optical properties of nanocomposite thin films deposited by remote plasma polymerization of rhodamine 6G
Aparicio, F. J., Borras, A., Blaszczyk-Lezak, I., Gröning, P., Álvarez-Herrero, A., Fernández-Rodrígez, M., … Barranco, A. (2009). Luminescent and optical properties of nanocomposite thin films deposited by remote plasma polymerization of rhodamine 6G. Plasma Processes and Polymers, 6(1), 17-26. https://doi.org/10.1002/ppap.200800092
Influence of RF plasma reactor setup on carboxylated hydrocarbon coatings
Körner, E., Fortunato, G., & Hegemann, D. (2009). Influence of RF plasma reactor setup on carboxylated hydrocarbon coatings. Plasma Processes and Polymers, 6(2), 119-125. https://doi.org/10.1002/ppap.200800102
Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose
Eyholzer, C., Lopez-Suevos, F., Tingaut, P., Zimmermann, T., & Oksman, K. (2010). Reinforcing effect of carboxymethylated nanofibrillated cellulose powder on hydroxypropyl cellulose. Cellulose, 17(4), 793-802. https://doi.org/10.1007/s10570-010-9423-9
Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential
Zimmermann, T., Bordeanu, N., & Strub, E. (2010). Properties of nanofibrillated cellulose from different raw materials and its reinforcement potential. Carbohydrate Polymers, 79(4), 1086-1093. https://doi.org/10.1016/j.carbpol.2009.10.045
Polyoxomolybdate-based selective membranes for chemical protection
Popa, A. M., Hu, L., Crespy, D., Henry, M., & Rossi, R. M. (2011). Polyoxomolybdate-based selective membranes for chemical protection. Journal of Membrane Science, 373(1-2), 196-201. https://doi.org/10.1016/j.memsci.2011.03.015
Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion
Chakraborty, A. K., Plyhm, T., Barbezat, M., Necola, A., & Terrasi, G. P. (2011). Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion. Journal of Nanoparticle Research, 13(12), 6493-6506. https://doi.org/10.1007/s11051-011-0552-3
Colloid-electrospinning: fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions
Crespy, D., Friedemann, K., & Popa, A. M. (2012). Colloid-electrospinning: fabrication of multicompartment nanofibers by the electrospinning of organic or/and inorganic dispersions and emulsions. Macromolecular Rapid Communications, 33(23), 1978-1995. https://doi.org/10.1002/marc.201200549
Effective and functional surface design for biosensing applications based on a novel conducting polymer and PMMA/clay nanocomposite
Kesik, M., Kocer, O., Kanik, F. E., Unlu, N. A., Rende, E., Aslan-Gurel, E., … Toppare, L. (2013). Effective and functional surface design for biosensing applications based on a novel conducting polymer and PMMA/clay nanocomposite. Electroanalysis, 25(8), 1995-2006. https://doi.org/10.1002/elan.201300193
Butterfly scales as bionic templates for complex ordered nanophotonic materials: a pathway to biomimetic plasmonics
Jakšić, Z., Pantelić, D., Sarajlić, M., Savić-Šević, S., Matović, J., Jelenković, B., … Ćurčić, B. (2013). Butterfly scales as bionic templates for complex ordered nanophotonic materials: a pathway to biomimetic plasmonics. Optical Materials, 35(10), 1869-1875. https://doi.org/10.1016/j.optmat.2013.04.004
Comparison of Al-Si-N nanocomposite coatings deposited by HIPIMS and DC magnetron sputtering
Lewin, E., Loch, D., Montagne, A., Ehiasarian, A. P., & Patscheider, J. (2013). Comparison of Al-Si-N nanocomposite coatings deposited by HIPIMS and DC magnetron sputtering. Surface and Coatings Technology, 232, 680-689. https://doi.org/10.1016/j.surfcoat.2013.06.076