Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Funding (EC, SNSF) = Novel high-energy-density electrode materials for Sodium(Lithium)-ion batteries: a nanocrystal approach
Search Results 1 - 20 of 26
Select Page
Colloidal antimony sulfide nanoparticles as a high-performance anode material for Li-ion and Na-ion batteries
Kravchyk, K. V., Kovalenko, M. V., & Bodnarchuk, M. I. (2020). Colloidal antimony sulfide nanoparticles as a high-performance anode material for Li-ion and Na-ion batteries. Scientific Reports, 10(1), 2554 (8 pp.). https://doi.org/10.1038/s41598-020-59512-3
Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries
Kravchyk, K. V., Widmer, R., Erni, R., Dubey, R. J. C., Krumeich, F., Kovalenko, M. V., & Bodnarchuk, M. I. (2019). Copper sulfide nanoparticles as high-performance cathode materials for Mg-ion batteries. Scientific Reports, 9(1), 7988 (8 pp.). https://doi.org/10.1038/s41598-019-43639-z
Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals
Bodnarchuk, M. I., Boehme, S. C., ten Brinck, S., Bernasconi, C., Shynkarenko, Y., Krieg, F., … Infante, I. (2019). Rationalizing and controlling the surface structure and electronic passivation of cesium lead halide nanocrystals. ACS Energy Letters, 4(1), 63-74. https://doi.org/10.1021/acsenergylett.8b01669
Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals
Papagiorgis, P., Manoli, A., Protesescu, L., Achilleos, C., Violaris, M., Nicolaides, K., … Itskos, G. (2018). Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals. ACS Photonics, 5(3), 907-917. https://doi.org/10.1021/acsphotonics.7b01159
NaFeF<sub>3</sub> nanoplates as low-cost sodium and lithium cathode materials for stationary energy storage
Kravchyk, K. V., Zünd, T., Wörle, M., Kovalenko, M. V., & Bodnarchuk, M. I. (2018). NaFeF3 nanoplates as low-cost sodium and lithium cathode materials for stationary energy storage. Chemistry of Materials, 30(6), 1825-1829. https://doi.org/10.1021/acs.chemmater.7b04743
Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights
Kravchyk, K. V., Piveteau, L., Caputo, R., He, M., Stadie, N. P., Bodnarchuk, M. I., … Kovalenko, M. V. (2018). Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights. ACS Nano, 12(8), 8297-8307. https://doi.org/10.1021/acsnano.8b03572
Unraveling exciton–phonon coupling in individual FAPbI<small><sub>3</sub></small> nanocrystals emitting near-infrared single photons
Fu, M., Tamarat, P., Trebbia, J. B., Bodnarchuk, M. I., Kovalenko, M. V., Even, J., & Lounis, B. (2018). Unraveling exciton–phonon coupling in individual FAPbI3 nanocrystals emitting near-infrared single photons. Nature Communications, 9(1), 3318 (10 pp.). https://doi.org/10.1038/s41467-018-05876-0
Phonon interaction and phase transition in single formamidinium lead bromide quantum dots
Pfingsten, O., Klein, J., Protesescu, L., Bodnarchuk, M. I., Kovalenko, M. V., & Bacher, G. (2018). Phonon interaction and phase transition in single formamidinium lead bromide quantum dots. Nano Letters, 18(7), 4440-4446. https://doi.org/10.1021/acs.nanolett.8b01523
Superfluorescence from lead halide perovskite quantum dot superlattices
Rainò, G., Becker, M. A., Bodnarchuk, M. I., Mahrt, R. F., Kovalenko, M. V., & Stöferle, T. (2018). Superfluorescence from lead halide perovskite quantum dot superlattices. Nature, 563(7733), 671-675. https://doi.org/10.1038/s41586-018-0683-0
Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform
Lignos, I., Morad, V., Shynkarenko, Y., Bernasconi, C., Maceiczyk, R. M., Protesescu, L., … Kovalenko, M. V. (2018). Exploration of near-infrared-emissive colloidal multinary lead halide perovskite nanocrystals using an automated microfluidic platform. ACS Nano, 12(6), 5504-5517. https://doi.org/10.1021/acsnano.8b01122
Aluminum chloride-graphite batteries with flexible current collectors prepared from earth-abundant elements
Wang, S., Kravchyk, K. V., Filippin, A. N., Müller, U., Tiwari, A. N., Buecheler, S., … Kovalenko, M. V. (2018). Aluminum chloride-graphite batteries with flexible current collectors prepared from earth-abundant elements. Advanced Science, 5(4), 1700712 (6 pp.). https://doi.org/10.1002/advs.201700712
Polarized emission in II–VI and perovskite colloidal quantum dots
Isarov, M., Tan, L. Z., Tilchin, J., Rabouw, F. T., Bodnarchuk, M. I., van Dijk-Moes, R. J. A., … Lifshitz, E. (2017). Polarized emission in II–VI and perovskite colloidal quantum dots. Journal of Physics B: Atomic, Molecular and Optical Physics, 50(21), 214001 (14 pp.). https://doi.org/10.1088/1361-6455/aa8dd4
Surface-engineered cationic nanocrystals stable in biological buffers and high ionic strength solutions
Dragoman, R. M., Grogg, M., Bodnarchuk, M. I., Tiefenboeck, P., Hilvert, D., Dirin, D. N., & Kovalenko, M. V. (2017). Surface-engineered cationic nanocrystals stable in biological buffers and high ionic strength solutions. Chemistry of Materials, 29(21), 9416-9428. https://doi.org/10.1021/acs.chemmater.7b03504
Rashba effect in a single colloidal CsPbBr<sub>3</sub> perovskite nanocrystal detected by magneto-optical measurements
Isarov, M., Tan, L. Z., Bodnarchuk, M. I., Kovalenko, M. V., Rappe, A. M., & Lifshitz, E. (2017). Rashba effect in a single colloidal CsPbBr3 perovskite nanocrystal detected by magneto-optical measurements. Nano Letters, 17(8), 5020-5026. https://doi.org/10.1021/acs.nanolett.7b02248
Nanocrystalline FeF<sub>3</sub> and MF<sub>2</sub> (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties
Guntlin, C. P., Zünd, T., Kravchyk, K. V., Wörle, M., Bodnarchuk, M. I., & Kovalenko, M. V. (2017). Nanocrystalline FeF3 and MF2 (M = Fe, Co, and Mn) from metal trifluoroacetates and their Li(Na)-ion storage properties. Journal of Materials Chemistry A, 5(16), 7383-7393. https://doi.org/10.1039/c7ta00862g
Properties and potential optoelectronic applications of lead halide perovskite nanocrystals
Kovalenko, M. V., Protesescu, L., & Bodnarchuk, M. I. (2017). Properties and potential optoelectronic applications of lead halide perovskite nanocrystals. Science, 358(6364), 745-750. https://doi.org/10.1126/science.aam7093
Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance
Huang, H., Bodnarchuk, M. I., Kershaw, S. V., Kovalenko, M. V., & Rogach, A. L. (2017). Lead halide perovskite nanocrystals in the research spotlight: stability and defect tolerance. ACS Energy Letters, 2(9), 2071-2083. https://doi.org/10.1021/acsenergylett.7b00547
Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals
Protesescu, L., Yakunin, S., Kumar, S., Bär, J., Bertolotti, F., Masciocchi, N., … Kovalenko, M. V. (2017). Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals. ACS Nano, 11(3), 3119-3134. https://doi.org/10.1021/acsnano.7b00116
Lead halide perovskite nanocrystals: from discovery to self-assembly and applications
Kovalenko, M. V., & Bodnarchuk, M. I. (2017). Lead halide perovskite nanocrystals: from discovery to self-assembly and applications. Chimia, 71(7-8), 461-470. https://doi.org/10.2533/chimia.2017.461
Air-stable, near- to mid-infrared emitting solids of PbTe/CdTe core-shell colloidal quantum dots
Protesescu, L., Zünd, T., Bodnarchuk, M. I., & Kovalenko, M. V. (2016). Air-stable, near- to mid-infrared emitting solids of PbTe/CdTe core-shell colloidal quantum dots. ChemPhysChem, 17(5), 670-674. https://doi.org/10.1002/cphc.201501008