Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Funding (EC, SNSF) = Q-Light - Engineered Quantum Light Sources with Nanocrystal Assemblies
Search Results 1 - 19 of 19
  • RSS Feed
Select Page
Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies
Bornschlegl, A. J., Lichtenegger, M. F., Luber, L., Lampe, C., Bodnarchuk, M. I., Kovalenko, M. V., & Urban, A. S. (2024). Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies. Advanced Energy Materials. https://doi.org/10.1002/aenm.202303312
Colloidal aziridinium lead bromide quantum dots
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., … Kovalenko, M. V. (2024). Colloidal aziridinium lead bromide quantum dots. ACS Nano, 18, 5684-5697. https://doi.org/10.1021/acsnano.3c11579
Quantifying the size-ddependent exciton-phonon coupling strength in single lead-halide perovskite quantum dots
Zhu, C., Feld, L. G., Svyrydenko, M., Cherniukh, I., Dirin, D. N., Bodnarchuk, M. I., … Rainò, G. (2024). Quantifying the size-ddependent exciton-phonon coupling strength in single lead-halide perovskite quantum dots. Advanced Optical Materials. https://doi.org/10.1002/adom.202301534
Single-photon superradiance in individual caesium lead halide quantum dots
Zhu, C., Boehme, S. C., Feld, L. G., Moskalenko, A., Dirin, D. N., Mahrt, R. F., … Rainò, G. (2024). Single-photon superradiance in individual caesium lead halide quantum dots. Nature, 626, 535-541. https://doi.org/10.1038/s41586-023-07001-8
Air-sensitive amplified spontaneous emission in lecithin-capped CsPbBr<sub>3</sub> nanocrystals thin films
Milanese, S., Morello, G., De Giorgi, M. L., Cretì, A., Andrusiv, H., Bodnarchuk, M. I., … Anni, M. (2023). Air-sensitive amplified spontaneous emission in lecithin-capped CsPbBr3 nanocrystals thin films. Materials Today Physics, 35, 101098 (8 pp.). https://doi.org/10.1016/j.mtphys.2023.101098
Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities
Dirin, D. N., Vivani, A., Zacharias, M., Sekh, T. V., Cherniukh, I., Yakunin, S., … Bodnarchuk, M. I. (2023). Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities. Nano Letters, 23, 1914-1923. https://doi.org/10.1021/acs.nanolett.2c04927
Size- and temperature-dependent lattice anisotropy and structural distortion in CsPbBr<sub>3</sub> quantum dots by reciprocal space X-ray total scattering analysis
Bertolotti, F., Dengo, N., Cervellino, A., Bodnarchuk, M. I., Bernasconi, C., Cherniukh, I., … Guagliardi, A. (2023). Size- and temperature-dependent lattice anisotropy and structural distortion in CsPbBr3 quantum dots by reciprocal space X-ray total scattering analysis. Small Structures. https://doi.org/10.1002/sstr.202300264
Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites
Tamarat, P., Prin, E., Berezovska, Y., Moskalenko, A., Nguyen, T. P. T., Xia, C., … Lounis, B. (2023). Universal scaling laws for charge-carrier interactions with quantum confinement in lead-halide perovskites. Nature Communications, 14, 229 (8 pp.). https://doi.org/10.1038/s41467-023-35842-4
Many-body correlations and exciton complexes in CsPbBr<sub>3</sub> quantum dots
Zhu, C., Nguyen, T., Boehme, S. C., Moskalenko, A., Dirin, D. N., Bodnarchuk, M. I., … Kovalenko, M. V. (2023). Many-body correlations and exciton complexes in CsPbBr3 quantum dots. Advanced Materials, 35(9), 2208354 (9 pp.). https://doi.org/10.1002/adma.202208354
Strongly confined CsPbBr<sub>3</sub> quantum dots as quantum emitters and building blocks for rhombic superlattices
Boehme, S. C., Bodnarchuk, M. I., Burian, M., Bertolotti, F., Cherniukh, I., Bernasconi, C., … Kovalenko, M. V. (2023). Strongly confined CsPbBr3 quantum dots as quantum emitters and building blocks for rhombic superlattices. ACS Nano, 17(3), 2089-2100. https://doi.org/10.1021/acsnano.2c07677
Flexible, free-standing polymer membranes sensitized by CsPbX3 nanocrystals as gain media for low threshold, multicolor light amplification
Athanasiou, M., Manoli, A., Papagiorgis, P., Georgiou, K., Berezovska, Y., Othonos, A., … Itskos, G. (2022). Flexible, free-standing polymer membranes sensitized by CsPbX3 nanocrystals as gain media for low threshold, multicolor light amplification. ACS Photonics, 9(7), 2385-2397. https://doi.org/10.1021/acsphotonics.2c00426
Size segregation and atomic structural coherence in spontaneous assemblies of colloidal cesium lead halide nanocrystals
Bertolotti, F., Vivani, A., Ferri, F., Anzini, P., Cervellino, A., Bodnarchuk, M. I., … Guagliardi, A. (2022). Size segregation and atomic structural coherence in spontaneous assemblies of colloidal cesium lead halide nanocrystals. Chemistry of Materials, 34(2), 594-608. https://doi.org/10.1021/acs.chemmater.1c03162
Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots
Zhu, C., Marczak, M., Feld, L., Boehme, S. C., Bernasconi, C., Moskalenko, A., … Rainò, G. (2022). Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Letters, 22, 3751-3760. https://doi.org/10.1021/acs.nanolett.2c00756
To nano or not to nano for bright halide perovskite emitters
Shamsi, J., Rainò, G., Kovalenko, M. V., & Stranks, S. D. (2021). To nano or not to nano for bright halide perovskite emitters. Nature Nanotechnology, 16, 1164-1175. https://doi.org/10.1038/s41565-021-01005-z
Structural diversity in multicomponent nanocrystal superlattices comprising lead halide perovskite nanocubes
Cherniukh, I., Sekh, T. V., Rainò, G., Ashton, O. J., Burian, M., Travesset, A., … Bodnarchuk, M. I. (2021). Structural diversity in multicomponent nanocrystal superlattices comprising lead halide perovskite nanocubes. ACS Nano, 16(5), 7210-7232. https://doi.org/10.1021/acsnano.1c10702
Unraveling the shell growth pathways of Pd-Pt core-shell nanocubes at atomic level by <em>in situ</em> liquid cell electron microscopy
Dachraoui, W., Bodnarchuk, M. I., Vogel, A., Kovalenko, M. V., & Erni, R. (2021). Unraveling the shell growth pathways of Pd-Pt core-shell nanocubes at atomic level by in situ liquid cell electron microscopy. Applied Physics Reviews, 8(4), 041407 (8 pp.). https://doi.org/10.1063/5.0059186
State of the art and prospects for halide perovskite nanocrystals
Dey, A., Ye, J., De, A., Debroye, E., Ha, S. K., Bladt, E., … Polavarapu, L. (2021). State of the art and prospects for halide perovskite nanocrystals. ACS Nano, 15(7), 10775-10981. https://doi.org/10.1021/acsnano.0c08903
Perovskite-type superlattices from lead halide perovskite nanocubes
Cherniukh, I., Rainò, G., Stöferle, T., Burian, M., Travesset, A., Naumenko, D., … Kovalenko, M. V. (2021). Perovskite-type superlattices from lead halide perovskite nanocubes. Nature, 593(7860), 535-542. https://doi.org/10.1038/s41586-021-03492-5
Shape-directed co-assembly of lead halide perovskite nanocubes with dielectric nanodisks into binary nanocrystal superlattices
Cherniukh, I., Rainò, G., Sekh, T. V., Zhu, C., Shynkarenko, Y., John, R. A., … Bodnarchuk, M. I. (2021). Shape-directed co-assembly of lead halide perovskite nanocubes with dielectric nanodisks into binary nanocrystal superlattices. ACS Nano, 15(10), 16488-16500. https://doi.org/10.1021/acsnano.1c06047