Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Empa Authors = Tiwari, Ayodhya N.
Search Results 1 - 20 of 218

Pages

  • RSS Feed
Select Page
A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems
Artuk, K., Turkay, D., Mensi, M. D., Steele, J. A., Jacobs, D. A., Othman, M., … Wolff, C. M. (2024). A universal perovskite/C60 interface modification via atomic layer deposited aluminum oxide for perovskite solar cells and perovskite–silicon tandems. Advanced Materials. https://doi.org/10.1002/adma.202311745
Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests
Suo, J., Yang, B., Mosconi, E., Bogachuk, D., Doherty, T. A. S., Frohna, K., … Hagfeldt, A. (2024). Multifunctional sulfonium-based treatment for perovskite solar cells with less than 1% efficiency loss over 4,500-h operational stability tests. Nature Energy. https://doi.org/10.1038/s41560-023-01421-6
Understanding coating thickness and uniformity of blade-coated SnO<sub>2</sub> electron transport layer for scalable perovskite solar cells
Siegrist, S., Nandi, P., Kothandaraman, R. K., Abdessalem, A., Tiwari, A. N., & Fu, F. (2023). Understanding coating thickness and uniformity of blade-coated SnO2 electron transport layer for scalable perovskite solar cells. Solar RRL, 7(14), 2300273 (7 pp.). https://doi.org/10.1002/solr.202300273
Accounting for fabrication variability in transparent perovskite solar cells for four-terminal tandem applications
Tan, H. Q., Liang, H., Krause, M., Zhao, X., Kothandaraman, R., Carron, R., … Xue, H. (2023). Accounting for fabrication variability in transparent perovskite solar cells for four-terminal tandem applications. Solar RRL, 7(18), 2300339 (13 pp.). https://doi.org/10.1002/solr.202300339
Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells
Kurisinkal Pious, J., Zwirner, Y., Lai, H., Olthof, S., Jeangros, Q., Gilshtein, E., … Fu, F. (2023). Revealing the role of tin fluoride additive in narrow bandgap Pb-Sn perovskites for highly efficient flexible all-perovskite tandem cells. ACS Applied Materials and Interfaces, 15(7), 10151-10157. https://doi.org/10.1021/acsami.2c19124
Efficiency boost of bifacial Cu(In,Ga)Se<sub>2</sub> thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process
Yang, S. C., Lin, T. Y., Ochoa, M., Lai, H., Kothandaraman, R., Fu, F., … Carron, R. (2023). Efficiency boost of bifacial Cu(In,Ga)Se2 thin-film solar cells for flexible and tandem applications with silver-assisted low-temperature process. Nature Energy, 8, 40-51. https://doi.org/10.1038/s41560-022-01157-9
Interplay between Li and Na amid co-doped solution-processed Cu<sub>2</sub>ZnSn(S,Se)<sub>4</sub> absorbers for solar cells
Moser, S., Tiwari, A. N., & Carron, R. (2023). Interplay between Li and Na amid co-doped solution-processed Cu2ZnSn(S,Se)4 absorbers for solar cells. Solar Energy Materials and Solar Cells, 250, 112094 (9 pp.). https://doi.org/10.1016/j.solmat.2022.112094
Controlled li alloying by postsynthesis electrochemical treatment of Cu<sub>2</sub>ZnSn(S, Se)<sub>4</sub> absorbers for solar cells
Moser, S., Aribia, A., Scaffidi, R., Gilshtein, E., Brammertz, G., Vermang, B., … Carron, R. (2023). Controlled li alloying by postsynthesis electrochemical treatment of Cu2ZnSn(S, Se)4 absorbers for solar cells. ACS Applied Energy Materials, 6(24), 12515-12525. https://doi.org/10.1021/acsaem.3c02483
Silver-alloyed low-bandgap CuInSe<sub>2</sub> solar cells for tandem applications
Krause, M., Yang, S. C., Moser, S., Nishiwaki, S., Tiwari, A. N., & Carron, R. (2023). Silver-alloyed low-bandgap CuInSe2 solar cells for tandem applications. Solar RRL, 7(9), 2201122 (10 pp.). https://doi.org/10.1002/solr.202201122
29.9%-efficient, commercially viable perovskite/CuInSe<sub>2</sub> thin-film tandem solar cells
Liang, H., Feng, J., Rodríguez-Gallegos, C. D., Krause, M., Wang, X., Alvianto, E., … Hou, Y. (2023). 29.9%-efficient, commercially viable perovskite/CuInSe2 thin-film tandem solar cells. Joule, 7(12), 2859-2872. https://doi.org/10.1016/j.joule.2023.10.007
Understanding the formation process of perovskite layers grown by chemical vapour deposition
Moser, T., Kothandaraman, R., Yang, S., Walter, A., Siegrist, S., Lai, H., … Fu, F. (2022). Understanding the formation process of perovskite layers grown by chemical vapour deposition. Frontiers in Energy Research, 10, 883882 (11 pp.). https://doi.org/10.3389/fenrg.2022.883882
Investigation and mitigation of sputter damage on Co-evaporated Cu(In,Ga)Se<sub>2</sub> absorbers for photovoltaic applications
Hertwig, R., Nishiwaki, S., Tiwari, A. N., & Carron, R. (2022). Investigation and mitigation of sputter damage on Co-evaporated Cu(In,Ga)Se2 absorbers for photovoltaic applications. Solar RRL, 6(9), 2200268 (9 pp.). https://doi.org/10.1002/solr.202200268
Charge carrier lifetime fluctuations and performance evaluation of Cu(In,Ga)Se<sub>2</sub> absorbers via time-resolved-photoluminescence microscopy
Ochoa, M., Yang, S. C., Nishiwaki, S., Tiwari, A. N., & Carron, R. (2022). Charge carrier lifetime fluctuations and performance evaluation of Cu(In,Ga)Se2 absorbers via time-resolved-photoluminescence microscopy. Advanced Energy Materials, 12(3), 2102800 (12 pp.). https://doi.org/10.1002/aenm.202102800
CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics
Zhang, C., Chen, M., Fu, F., Zhu, H., Feurer, T., Tian, W., … Shi, Y. (2022). CNT-based bifacial perovskite solar cells toward highly efficient 4-terminal tandem photovoltaics. Energy and Environmental Science, 15(4), 1536-1544. https://doi.org/10.1039/d1ee04008a
Unlocking stable multi-electron cycling in NMC811 thin-films between 1.5 – 4.7 V
Aribia, A., Sastre, J., Chen, X., Futscher, M. H., Rumpel, M., Priebe, A., … Romanyuk, Y. E. (2022). Unlocking stable multi-electron cycling in NMC811 thin-films between 1.5 – 4.7 V. Advanced Energy Materials, 12(40), 2201750 (8 pp.). https://doi.org/10.1002/aenm.202201750
High-performance flexible all-perovskite tandem solar cells with reduced V<sub>OC</sub>-deficit in wide-bandgap subcell
Lai, H., Luo, J., Zwirner, Y., Olthof, S., Wieczorek, A., Ye, F., … Fu, F. (2022). High-performance flexible all-perovskite tandem solar cells with reduced VOC-deficit in wide-bandgap subcell. Advanced Energy Materials, 12(45), 2202438 (12 pp.). https://doi.org/10.1002/aenm.202202438
Laser patterned flexible 4T perovskite‐Cu(In,Ga)Se<sub>2</sub> tandem mini‐module with over 18% efficiency
Kothandaraman, R. K., Lai, H., Aribia, A., Nishiwaki, S., Siegrist, S., Krause, M., … Fu, F. (2022). Laser patterned flexible 4T perovskite‐Cu(In,Ga)Se2 tandem mini‐module with over 18% efficiency. Solar RRL, 6(9), 2200392 (11 pp.). https://doi.org/10.1002/solr.202200392
Lateral charge carrier transport in Cu(In,Ga)Se<sub>2</sub> studied by time-resolved photoluminescence mapping
Ochoa, M., Nishiwaki, S., Yang, S. C., Tiwari, A. N., & Carron, R. (2021). Lateral charge carrier transport in Cu(In,Ga)Se2 studied by time-resolved photoluminescence mapping. Physica Status Solidi: Rapid Research Letters, 15(10), 2100313 (10 pp.). https://doi.org/10.1002/pssr.202100313
Insights from transient absorption spectroscopy into electron dynamics along the Ga-Gradient in Cu(In,Ga)Se<sub>2</sub> solar cells
Chang, Y. H., Carron, R., Ochoa, M., Bozal-Ginesta, C., Tiwari, A. N., Durrant, J. R., & Steier, L. (2021). Insights from transient absorption spectroscopy into electron dynamics along the Ga-Gradient in Cu(In,Ga)Se2 solar cells. Advanced Energy Materials, 11(8), 2003446 (10 pp.). https://doi.org/10.1002/aenm.202003446
Influence of the rear interface on composition and photoluminescence yield of CZTSSe absorbers: a case for an Al<sub>2</sub>O<sub>3</sub> intermediate layer
Cabas-Vidani, A., Choubrac, L., Márquez, J. A., Unold, T., Maiberg, M., Scheer, R., … Romanyuk, Y. E. (2021). Influence of the rear interface on composition and photoluminescence yield of CZTSSe absorbers: a case for an Al2O3 intermediate layer. ACS Applied Materials and Interfaces, 13(16), 19487-19496. https://doi.org/10.1021/acsami.1c02437
 

Pages