Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Empa Authors = Fasel, Roman
Search Results 1 - 20 of 209

Pages

  • RSS Feed
Select Page
Tailoring magnetism of graphene nanoflakes via tip-controlled dehydrogenation
Zhao, C., Huang, Q., Valenta, L., Eimre, K., Yang, L., Yakutovich, A. V., … Pignedoli, C. A. (2024). Tailoring magnetism of graphene nanoflakes via tip-controlled dehydrogenation. Physical Review Letters, 132(4), 046201 (6 pp.). https://doi.org/10.1103/PhysRevLett.132.046201
On-surface cyclization of vinyl groups on poly-para-phenylene involving an unusual pentagon to hexagon transformation
Di Giovannantonio, M., Qiu, Z., Pignedoli, C. A., Asako, S., Ruffieux, P., Müllen, K., … Fasel, R. (2024). On-surface cyclization of vinyl groups on poly-para-phenylene involving an unusual pentagon to hexagon transformation. Nature Communications, 15, 1910 (8 pp.). https://doi.org/10.1038/s41467-024-46173-3
Sterically selective [3 + 3] cycloaromatization in the on-surface synthesis of nanographenes
Kinikar, A., Wang, X. Y., Di Giovannantonio, M., Urgel, J. I., Liu, P., Eimre, K., … Fasel, R. (2024). Sterically selective [3 + 3] cycloaromatization in the on-surface synthesis of nanographenes. ACS Nanoscience Au. https://doi.org/10.1021/acsnanoscienceau.3c00062
Quantifying alignment and quality of graphene nanoribbons: a polarized Raman spectroscopy approach
Darawish, R., Overbeck, J., Müllen, K., Calame, M., Ruffieux, P., Fasel, R., & Barin, G. B. (2024). Quantifying alignment and quality of graphene nanoribbons: a polarized Raman spectroscopy approach. Carbon, 218, 118688 (8 pp.). https://doi.org/10.1016/j.carbon.2023.118688
On-surface synthesis of anthracene-fused zigzag graphene nanoribbons from 2,7-dibromo-9,9'-bianthryl reveals unexpected ring rearrangements
Xu, X., Kinikar, A., Di Giovannantonio, M., Pignedoli, C. A., Ruffieux, P., Müllen, K., … Narita, A. (2024). On-surface synthesis of anthracene-fused zigzag graphene nanoribbons from 2,7-dibromo-9,9'-bianthryl reveals unexpected ring rearrangements. Precision Chemistry, 2(2), 81-87. https://doi.org/10.1021/prechem.3c00116
Dramatic acceleration of the hopf cyclization on gold(111): from enediynes to peri-fused diindenochrysene graphene nanoribbons
Zhao, C., Bhagwandin, D. D., Xu, W., Ruffieux, P., Khan, S. I., Pignedoli, C. A., … Rubin, Y. (2024). Dramatic acceleration of the hopf cyclization on gold(111): from enediynes to peri-fused diindenochrysene graphene nanoribbons. Journal of the American Chemical Society, 146(4), 2474-2483. https://doi.org/10.1021/jacs.3c10144
Steering large magnetic exchange coupling in nanographenes near the closed-shell to open-shell transition
Biswas, K., Soler, D., Mishra, S., Chen, Q., Yao, X., Sánchez-Grande, A., … Écija, D. (2023). Steering large magnetic exchange coupling in nanographenes near the closed-shell to open-shell transition. Journal of the American Chemical Society, 145(5), 2968-2974. https://doi.org/10.1021/jacs.2c11431
Exchange interactions and intermolecular hybridization in a spin-<sup>1</sup>/<sub>2</sub> nanographene dimer
Turco, E., Krane, N., Bernhardt, A., Jacob, D., Gandus, G., Passerone, D., … Ruffieux, P. (2023). Exchange interactions and intermolecular hybridization in a spin-1/2 nanographene dimer. Nano Letters, 23(20), 9353-9359. https://doi.org/10.1021/acs.nanolett.3c02633
Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture
Zhang, J., Braun, O., Borin Barin, G., Sangtarash, S., Overbeck, J., Darawish, R., … Calame, M. (2023). Tunable quantum dots from atomically precise graphene nanoribbons using a multi‐gate architecture. Advanced Electronic Materials, 9(4), 2201204 (8 pp.). https://doi.org/10.1002/aelm.202201204
Determining the number of graphene nanoribbons in dual-gate field-effect transistors
Zhang, J., Borin Barin, G., Furrer, R., Du, C. Z., Wang, X. Y., Müllen, K., … Perrin, M. L. (2023). Determining the number of graphene nanoribbons in dual-gate field-effect transistors. Nano Letters, 23(18), 8474-8480. https://doi.org/10.1021/acs.nanolett.3c01931
On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges
Borin Barin, G., Di Giovannantonio, M., Lohr, T. G., Mishra, S., Kinikar, A., Perrin, M., … Ruffieux, P. (2023). On-surface synthesis and characterization of teranthene and hexanthene: ultrashort graphene nanoribbons with mixed armchair and zigzag edges. Nanoscale, 15(41), 16766-16774. https://doi.org/10.1039/D3NR03736C
MoRe electrodes with 10 nm nanogaps for electrical contact to atomically precise graphene nanoribbons
Bouwmeester, D., Ghiasi, T. S., Borin Barin, G., Müllen, K., Ruffieux, P., Fasel, R., & van der Zant, H. S. J. (2023). MoRe electrodes with 10 nm nanogaps for electrical contact to atomically precise graphene nanoribbons. ACS Applied Nano Materials, 6(15), 13935-13944. https://doi.org/10.1021/acsanm.3c01630
Contact engineering for graphene nanoribbon devices
Mutlu, Z., Dinh, C., Borin Barin, G., Jacobse, P. H., Kumar, A., Polley, D., … Bokor, J. (2023). Contact engineering for graphene nanoribbon devices. Applied Physics Reviews, 10(4), 041412 (10 pp.). https://doi.org/10.1063/5.0172432
Edge contacts to atomically precise graphene nanoribbons
Huang, W., Braun, O., Indolese, D. I., Borin Barin, G., Gandus, G., Stiefel, M., … Perrin, M. L. (2023). Edge contacts to atomically precise graphene nanoribbons. ACS Nano, 17, 18706-18715. https://doi.org/10.1021/acsnano.3c00782
Platinum contacts for 9-atom-wide armchair graphene nanoribbons
Hsu, C., Rohde, M., Borin Barin, G., Gandus, G., Passerone, D., Luisier, M., … El Abbassi, M. (2023). Platinum contacts for 9-atom-wide armchair graphene nanoribbons. Applied Physics Letters, 122(17), 173104 (6 pp.). https://doi.org/10.1063/5.0143663
Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors
Lin, Y. C., Mutlu, Z., Borin Barin, G., Hong, Y., Llinas, J. P., Narita, A., … Bokor, J. (2023). Scaling and statistics of bottom-up synthesized armchair graphene nanoribbon transistors. Carbon, 205, 519-526. https://doi.org/10.1016/j.carbon.2023.01.054
On‐surface interchain coupling and skeletal rearrangement of indenofluorene polymers
Chen, Q., Di Giovannantonio, M., Eimre, K., Urgel, J. I., Ruffieux, P., Pignedoli, C. A., … Narita, A. (2023). On‐surface interchain coupling and skeletal rearrangement of indenofluorene polymers. Macromolecular Chemistry and Physics, 224(24), 2300345 (7 pp.). https://doi.org/10.1002/macp.202300345
Observation of the magnetic ground state of the two smallest triangular nanographenes
Turco, E., Bernhardt, A., Krane, N., Valenta, L., Fasel, R., Juríček, M., & Ruffieux, P. (2023). Observation of the magnetic ground state of the two smallest triangular nanographenes. JACS Au, 3(5), 1358-1364. https://doi.org/10.1021/jacsau.2c00666
Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states
Wang, D., Bao, D. L., Zheng, Q., Wang, C. T., Wang, S., Fan, P., … Gao, H. J. (2023). Twisted bilayer zigzag-graphene nanoribbon junctions with tunable edge states. Nature Communications, 14(1), 1018 (9 pp.). https://doi.org/10.1038/s41467-023-36613-x
Contacting individual graphene nanoribbons using carbon nanotube electrodes
Zhang, J., Qian, L., Borin Barin, G., Daaoub, A. H. S., Chen, P., Müllen, K., … Perrin, M. L. (2023). Contacting individual graphene nanoribbons using carbon nanotube electrodes. Nature Electronics, 6, 572-581. https://doi.org/10.1038/s41928-023-00991-3
 

Pages