Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Journal = ACS Nano
Search Results 1 - 20 of 124

Pages

  • RSS Feed
Select Page
Hot excitons cool in metal halide perovskite nanocrystals as fast as CdSe nanocrystals
Strandell, D. P., Zenatti, D., Nagpal, P., Ghosh, A., Dirin, D. N., Kovalenko, M. V., & Kambhampati, P. (2024). Hot excitons cool in metal halide perovskite nanocrystals as fast as CdSe nanocrystals. ACS Nano, 18(1), 1054-1062. https://doi.org/10.1021/acsnano.3c10301
Electrochemical activation of Fe-LiF conversion cathodes in thin-film solid-state batteries
Casella, J., Morzy, J., Gilshtein, E., Yarema, M., Futscher, M. H., & Romanyuk, Y. E. (2024). Electrochemical activation of Fe-LiF conversion cathodes in thin-film solid-state batteries. ACS Nano, 18(5), 4352-4359. https://doi.org/10.1021/acsnano.3c10146
Strong light-matter coupling in lead halide perovskite quantum dot solids
Bujalance, C., Caliò, L., Dirin, D. N., Tiede, D. O., Galisteo-López, J. F., Feist, J., … Míguez, H. (2024). Strong light-matter coupling in lead halide perovskite quantum dot solids. ACS Nano, 18(6), 4922-4931. https://doi.org/10.1021/acsnano.3c10358
Environmental and health impacts of graphene and other two-dimensional materials: a graphene flagship perspective
Lin, H., Buerki-Thurnherr, T., Kaur, J., Wick, P., Pelin, M., Tubaro, A., … Bianco, A. (2024). Environmental and health impacts of graphene and other two-dimensional materials: a graphene flagship perspective. ACS Nano. https://doi.org/10.1021/acsnano.3c09699
Colloidal aziridinium lead bromide quantum dots
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., … Kovalenko, M. V. (2024). Colloidal aziridinium lead bromide quantum dots. ACS Nano, 18, 5684-5697. https://doi.org/10.1021/acsnano.3c11579
Hybrid amyloid-chitin nanofibrils for magnetic and catalytic aerogels
Peydayesh, M., Boschi, E., Bagnani, M., Tay, D., Donat, F., Almohammadi, H., … Mezzenga, R. (2024). Hybrid amyloid-chitin nanofibrils for magnetic and catalytic aerogels. ACS Nano, 18(8), 6690-6701. https://doi.org/10.1021/acsnano.4c00883
Enhancing multiexcitonic emission in metal-halide perovskites by quantum confinement
Strandell, D., Dirin, D., Zenatti, D., Nagpal, P., Ghosh, A., Raino, G., … Kambhampati, P. (2023). Enhancing multiexcitonic emission in metal-halide perovskites by quantum confinement. ACS Nano, 17(24), 24910-24918. https://doi.org/10.1021/acsnano.3c06497
Direct observation of ultrafast lattice distortions during exciton-polaron formation in lead halide perovskite nanocrystals
Seiler, H., Zahn, D., Taylor, V. C. A., Bodnarchuk, M. I., Windsor, Y. W., Kovalenko, M. V., & Ernstorfer, R. (2023). Direct observation of ultrafast lattice distortions during exciton-polaron formation in lead halide perovskite nanocrystals. ACS Nano, 17(3), 1979-1988. https://doi.org/10.1021/acsnano.2c06727
Dilute rhenium doping and its impact on defects in MoS<sub>2</sub>
Torsi, R., Munson, K. T., Pendurthi, R., Marques, E., Van Troeye, B., Huberich, L., … Robinson, J. A. (2023). Dilute rhenium doping and its impact on defects in MoS2. ACS Nano, 17(16), 15629-15640. https://doi.org/10.1021/acsnano.3c02626
Rational design of Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene inks for conductive, transparent films
Guo, T., Zhou, D., Deng, S., Jafarpour, M., Avaro, J., Neels, A., … Zhang, C. (2023). Rational design of Ti3C2Tx MXene inks for conductive, transparent films. ACS Nano, 17(4), 3737-3749. https://doi.org/10.1021/acsnano.2c11180
Driving a third generation molecular motor with electrons across a surface
Srivastava, G., Štacko, P., Mendieta-Moreno, J. I., Edalatmanesh, S., Kistemaker, J. C. M., Heideman, G. H., … Ernst, K. H. (2023). Driving a third generation molecular motor with electrons across a surface. ACS Nano, 17(4), 3931-3938. https://doi.org/10.1021/acsnano.2c12340
Confinement and exciton binding energy effects on hot carrier cooling in lead halide perovskite nanomaterials
Carwithen, B. P., Hopper, T. R., Ge, Z., Mondal, N., Wang, T., Mazlumian, R., … Bakulin, A. A. (2023). Confinement and exciton binding energy effects on hot carrier cooling in lead halide perovskite nanomaterials. ACS Nano, 17(7), 6638-6648. https://doi.org/10.1021/acsnano.2c12373
Stability criterion for the assembly of core-shell lipid-polymer-nucleic acid nanoparticles
Paris, J. L., Gaspar, R., Coelho, F., De Beule, P. A. A., & Silva, B. F. B. (2023). Stability criterion for the assembly of core-shell lipid-polymer-nucleic acid nanoparticles. ACS Nano, 17(17), 17587-17594. https://doi.org/10.1021/acsnano.3c07204
Poly(ethyl ethylene phosphate): overcoming the "Polyethylene Glycol Dilemma" for cancer immunotherapy and mRNA vaccination
Yu, X., Li, H., Dong, C., Qi, S., Yang, K., Bai, B., … Yu, G. (2023). Poly(ethyl ethylene phosphate): overcoming the "Polyethylene Glycol Dilemma" for cancer immunotherapy and mRNA vaccination. ACS Nano, 17(23), 23814-23828. https://doi.org/10.1021/acsnano.3c07932
Edge contacts to atomically precise graphene nanoribbons
Huang, W., Braun, O., Indolese, D. I., Borin Barin, G., Gandus, G., Stiefel, M., … Perrin, M. L. (2023). Edge contacts to atomically precise graphene nanoribbons. ACS Nano, 17, 18706-18715. https://doi.org/10.1021/acsnano.3c00782
Exploiting mass spectrometry to unlock the mechanism of nanoparticle-induced inflammasome activation
Gupta, G., Kaur, J., Bhattacharya, K., Chambers, B. J., Gazzi, A., Furesi, G., … Fadeel, B. (2023). Exploiting mass spectrometry to unlock the mechanism of nanoparticle-induced inflammasome activation. ACS Nano, 17(17), 17451-17467. https://doi.org/10.1021/acsnano.3c05600
Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries
Dachraoui, W., Pauer, R., Battaglia, C., & Erni, R. (2023). Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries. ACS Nano, 17(20), 20434-20444. https://doi.org/10.1021/acsnano.3c06879
Spin-stabilization by coulomb blockade in a vanadium dimer in WSe<sub>2</sub>
Stolz, S., Hou, B., Wang, D., Kozhakhmetov, A., Dong, C., Gröning, O., … Schuler, B. (2023). Spin-stabilization by coulomb blockade in a vanadium dimer in WSe2. ACS Nano, 17(23), 23422-23429. https://doi.org/10.1021/acsnano.3c04841
Strongly confined CsPbBr<sub>3</sub> quantum dots as quantum emitters and building blocks for rhombic superlattices
Boehme, S. C., Bodnarchuk, M. I., Burian, M., Bertolotti, F., Cherniukh, I., Bernasconi, C., … Kovalenko, M. V. (2023). Strongly confined CsPbBr3 quantum dots as quantum emitters and building blocks for rhombic superlattices. ACS Nano, 17(3), 2089-2100. https://doi.org/10.1021/acsnano.2c07677
Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption
Zhang, X., Tian, X. L., Qin, Y., Qiao, J., Pan, F., Wu, N., … Zeng, Z. (2023). Conductive metal-organic frameworks with tunable dielectric properties for boosting electromagnetic wave absorption. ACS Nano, 17(13), 12510-12518. https://doi.org/10.1021/acsnano.3c02170
 

Pages