Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Journal = Nano Letters
Search Results 1 - 20 of 79

Pages

  • RSS Feed
Select Page
4D force detection of cell adhesion and contractility
Chala, N., Zhang, X., Zambelli, T., Zhang, Z., Schneider, T., Panozzo, D., … Ferrari, A. (2023). 4D force detection of cell adhesion and contractility. Nano Letters, 23(7), 2467-2475. https://doi.org/10.1021/acs.nanolett.2c03733
Growth and self-assembly of CsPbBr<sub>3 </sub>nanocrystals in the TOPO/PbBr<sub>2</sub> synthesis as seen with X-ray scattering
Montanarella, F., Akkerman, Q. A., Bonatz, D., van der Sluijs, M. M., van der Bok, J. C., Prins, P. T., … Kovalenko, M. V. (2023). Growth and self-assembly of CsPbBr3 nanocrystals in the TOPO/PbBr2 synthesis as seen with X-ray scattering. Nano Letters, 23(2), 667-676. https://doi.org/10.1021/acs.nanolett.2c04532
Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities
Dirin, D. N., Vivani, A., Zacharias, M., Sekh, T. V., Cherniukh, I., Yakunin, S., … Bodnarchuk, M. I. (2023). Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities. Nano Letters, 23, 1914-1923. https://doi.org/10.1021/acs.nanolett.2c04927
Multiscale supercrystal meta-atoms
Tonkaev, P., Grechaninova, E., Iorsh, I., Montanarella, F., Kivshar, Y., Kovalenko, M. V., & Makarov, S. (2023). Multiscale supercrystal meta-atoms. Nano Letters, 24, 2758-2764. https://doi.org/10.1021/acs.nanolett.3c04580
Long-lived exciton coherence in mixed-halide perovskite crystals
Grisard, S., Trifonov, A. V., Solovev, I. A., Yakovlev, D. R., Hordiichuk, O., Kovalenko, M. V., … Akimov, I. A. (2023). Long-lived exciton coherence in mixed-halide perovskite crystals. Nano Letters, 23(16), 7397-7403. https://doi.org/10.1021/acs.nanolett.3c01817
Exchange interactions and intermolecular hybridization in a spin-<sup>1</sup>/<sub>2</sub> nanographene dimer
Turco, E., Krane, N., Bernhardt, A., Jacob, D., Gandus, G., Passerone, D., … Ruffieux, P. (2023). Exchange interactions and intermolecular hybridization in a spin-1/2 nanographene dimer. Nano Letters, 23(20), 9353-9359. https://doi.org/10.1021/acs.nanolett.3c02633
Determining the number of graphene nanoribbons in dual-gate field-effect transistors
Zhang, J., Borin Barin, G., Furrer, R., Du, C. Z., Wang, X. Y., Müllen, K., … Perrin, M. L. (2023). Determining the number of graphene nanoribbons in dual-gate field-effect transistors. Nano Letters, 23(18), 8474-8480. https://doi.org/10.1021/acs.nanolett.3c01931
Coherent spin dynamics of electrons in two-dimensional (PEA)<sub>2</sub>PbI<sub>4 p</sub>erovskites
Kirstein, E., Zhukov, E. A., Yakovlev, D. R., Kopteva, N. E., Harkort, C., Kudlacik, D., … Bayer, M. (2023). Coherent spin dynamics of electrons in two-dimensional (PEA)2PbI4 perovskites. Nano Letters, 23(1), 205-212. https://doi.org/10.1021/acs.nanolett.2c03975
Room-temperature anomalous coherent excitonic optical stark effect in metal halide perovskite quantum dots
Shrivastava, M., Krieg, F., Mandal, D., Poonia, A. K., Bera, S. K., Kovalenko, M. V., & Adarsh, K. V. (2022). Room-temperature anomalous coherent excitonic optical stark effect in metal halide perovskite quantum dots. Nano Letters, 22(2), 808-814. https://doi.org/10.1021/acs.nanolett.1c04471
Nanoscale-resolved surface-to-bulk electron transport in CsPbBr<sub>3</sub>Perovskite
Polishchuk, S., Puppin, M., Crepaldi, A., Gatti, G., Dirin, D. N., Nazarenko, O., … Chergui, M. (2022). Nanoscale-resolved surface-to-bulk electron transport in CsPbBr3Perovskite. Nano Letters, 22(3), 1067-1074. https://doi.org/10.1021/acs.nanolett.1c03941
Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots
Zhu, C., Marczak, M., Feld, L., Boehme, S. C., Bernasconi, C., Moskalenko, A., … Rainò, G. (2022). Room-temperature, highly pure single-photon sources from all-inorganic lead halide perovskite quantum dots. Nano Letters, 22, 3751-3760. https://doi.org/10.1021/acs.nanolett.2c00756
Ligands mediate anion exchange between colloidal lead-halide perovskite nanocrystals
Scharf, E., Krieg, F., Elimelech, O., Oded, M., Levi, A., Dirin, D. N., … Banin, U. (2022). Ligands mediate anion exchange between colloidal lead-halide perovskite nanocrystals. Nano Letters, 22(11), 4340-4346. https://doi.org/10.1021/acs.nanolett.2c00611
Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon
Dwivedi, N., Neogi, A., Patra, T. K., Dhand, C., Dutta, T., Yeo, R. J., … Bhatia, C. S. (2021). Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon. Nano Letters, 21, 8960-8969. https://doi.org/10.1021/acs.nanolett.1c01997
Optical probing of crystal lattice configurations in single CsPbBr<sub>3 </sub>nanoplatelets
Schmitz, A., Montanarella, F., Schaberg, L. L., Abdelbaky, M., Kovalenko, M. V., & Bacher, G. (2021). Optical probing of crystal lattice configurations in single CsPbBr3 nanoplatelets. Nano Letters, 21(21), 9085-9092. https://doi.org/10.1021/acs.nanolett.1c02775
Fast intrinsic emission quenching in Cs<sub>4</sub>PbBr<sub>6</sub> nanocrystals
Petralanda, U., Biffi, G., Boehme, S. C., Baranov, D., Krahne, R., Manna, L., & Infante, I. (2021). Fast intrinsic emission quenching in Cs4PbBr6 nanocrystals. Nano Letters, 21(20), 8619-8626. https://doi.org/10.1021/acs.nanolett.1c02537
Mechanical fingerprint of senescence in endothelial cells
Chala, N., Moimas, S., Giampietro, C., Zhang, X., Zambelli, T., Exarchos, V., … Ferrari, A. (2021). Mechanical fingerprint of senescence in endothelial cells. Nano Letters, 21(12), 4911-4920. https://doi.org/10.1021/acs.nanolett.1c00064
Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy
Dachraoui, W., Keller, D., Henninen, T. R., Ashton, O. J., & Erni, R. (2021). Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy. Nano Letters, 21(7), 2861-2869. https://doi.org/10.1021/acs.nanolett.0c04965
Inversion-symmetry engineering in layered oxide thin films
Nordlander, J., Rossell, M. D., Campanini, M., Fiebig, M., & Trassin, M. (2021). Inversion-symmetry engineering in layered oxide thin films. Nano Letters, 21(7), 2780-2785. https://doi.org/10.1021/acs.nanolett.0c04819
Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets
Donati, F., Pivetta, M., Wolf, C., Singha, A., Wäckerlin, C., Baltic, R., … Rusponi, S. (2021). Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets. Nano Letters, 21(19), 8266-8273. https://doi.org/10.1021/acs.nanolett.1c02744
Breaking the quantum PIN code of atomic synapses
Török, T. N., Csontos, M., Makk, P., & Halbritter, A. (2020). Breaking the quantum PIN code of atomic synapses. Nano Letters, 20, 1192-1200. https://doi.org/10.1021/acs.nanolett.9b04617
 

Pages