Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Journal = Surface and Coatings Technology
Search Results 1 - 20 of 89

Pages

  • RSS Feed
Select Page
Microwave plasma-assisted reactive HiPIMS of InN films: plasma environment and material characterisation
Hain, C., Schweizer, P., Sturm, P., Borzì, A., Thomet, J. E., Michler, J., … Nelis, T. (2023). Microwave plasma-assisted reactive HiPIMS of InN films: plasma environment and material characterisation. Surface and Coatings Technology, 454, 129188 (9 pp.). https://doi.org/10.1016/j.surfcoat.2022.129188
Deposition and characterisation of <em>c</em>-axis oriented AlScN thin films via microwave plasma-assisted reactive HiPIMS
Lapeyre, L., Hain, C., Sturm, P., Metzger, J., Borzì, A., Wieczerzak, K., … Nelis, T. (2023). Deposition and characterisation of c-axis oriented AlScN thin films via microwave plasma-assisted reactive HiPIMS. Surface and Coatings Technology, 464, 129540 (9 pp.). https://doi.org/10.1016/j.surfcoat.2023.129540
Thermally-induced microstructure evolution of Ag/AlN nano-multilayers: the role of annealing atmosphere on the Ag outflow driving force
Druzhinin, A. V., Cancellieri, C., Klyatskina, E. A., Mazilkin, A. A., Khrapova, N. N., Straumal, B. B., & Janczak-Rusch, J. (2023). Thermally-induced microstructure evolution of Ag/AlN nano-multilayers: the role of annealing atmosphere on the Ag outflow driving force. Surface and Coatings Technology, 471, 129880 (11 pp.). https://doi.org/10.1016/j.surfcoat.2023.129880
Improving the crystallinity and texture of oblique-angle-deposited AlN thin films using reactive synchronized HiPIMS
Patidar, J., Sharma, A., Zhuk, S., Lorenzin, G., Cancellieri, C., Sarott, M. F., … Siol, S. (2023). Improving the crystallinity and texture of oblique-angle-deposited AlN thin films using reactive synchronized HiPIMS. Surface and Coatings Technology, 468, 129719 (13 pp.). https://doi.org/10.1016/j.surfcoat.2023.129719
From pulsed-DCMS and HiPIMS to microwave plasma-assisted sputtering: their influence on the properties of diamond-like carbon films
Hain, C., Brown, D., Welsh, A., Wieczerzak, K., Weiss, R., Michler, J., … Nelis, T. (2022). From pulsed-DCMS and HiPIMS to microwave plasma-assisted sputtering: their influence on the properties of diamond-like carbon films. Surface and Coatings Technology, 432, 127928 (12 pp.). https://doi.org/10.1016/j.surfcoat.2021.127928
Influence of HiPIMS pulse widths on the deposition behaviour and properties of CuAgZr compositionally graded films
Lapeyre, L., Wieczerzak, K., Hain, C., Metzger, J., Sharma, A., Bensaoula, A., … Nelis, T. (2022). Influence of HiPIMS pulse widths on the deposition behaviour and properties of CuAgZr compositionally graded films. Surface and Coatings Technology, 450, 129002 (10 pp.). https://doi.org/10.1016/j.surfcoat.2022.129002
Synthesis and characterization of TiB<sub>x</sub> (1.2 ≤ x ≤ 2.8) thin films grown by DC magnetron co-sputtering from TiB<sub>2</sub> and Ti targets
Hellgren, N., Sredenschek, A., Petruins, A., Palisaitis, J., Klimashin, F. F., Sortica, M. A., … Rosen, J. (2022). Synthesis and characterization of TiBx (1.2 ≤ x ≤ 2.8) thin films grown by DC magnetron co-sputtering from TiB2 and Ti targets. Surface and Coatings Technology, 433, 128110 (9 pp.). https://doi.org/10.1016/j.surfcoat.2022.128110
Processing and characterization of a multibeam sputtered nanocrystalline CoCrFeNi high-entropy alloy film
Nagy, P., Rohbeck, N., Roussely, G., Sortais, P., Lábár, J. L., Gubicza, J., … Pethö, L. (2020). Processing and characterization of a multibeam sputtered nanocrystalline CoCrFeNi high-entropy alloy film. Surface and Coatings Technology, 386, 125465 (9 pp.). https://doi.org/10.1016/j.surfcoat.2020.125465
Experimental and numerical study of the influence of induction heating process on build rates Induction Heating-assisted laser Direct Metal Deposition (IH-DMD)
Dalaee, M. T., Gloor, L., Leinenbach, C., & Wegener, K. (2020). Experimental and numerical study of the influence of induction heating process on build rates Induction Heating-assisted laser Direct Metal Deposition (IH-DMD). Surface and Coatings Technology, 384, 125275 (12 pp.). https://doi.org/10.1016/j.surfcoat.2019.125275
The formation of a homogeneous α-alumina coating on a Ni-based superalloy from a layer stack deposited by cathodic arc evaporation
Ast, J., Balogh-Michels, Z., Döbeli, M., Dommann, A., Gindrat, M., Maeder, X., … Ramm, J. (2019). The formation of a homogeneous α-alumina coating on a Ni-based superalloy from a layer stack deposited by cathodic arc evaporation. Surface and Coatings Technology, 360, 329-334. https://doi.org/10.1016/j.surfcoat.2018.12.089
Microstructure-driven strengthening of TiB<sub>2</sub> coatings deposited by pulsed magnetron sputtering
Polyakov, M. N., Morstein, M., Maeder, X., Nelis, T., Lundin, D., Wehrs, J., … Michler, J. (2019). Microstructure-driven strengthening of TiB2 coatings deposited by pulsed magnetron sputtering. Surface and Coatings Technology, 368, 88-96. https://doi.org/10.1016/j.surfcoat.2019.04.042
A setup for arc-free reactive DC sputter deposition of Al-O-N
Fischer, M., Trant, M., Thorwarth, K., Patscheider, J., & Hug, H. J. (2019). A setup for arc-free reactive DC sputter deposition of Al-O-N. Surface and Coatings Technology, 362, 220-224. https://doi.org/10.1016/j.surfcoat.2019.01.082
A methodology for characterizing the electrochemical stability of DLC coated interlayers and interfaces
Ilic, E., Pardo, A., Suter, T., Mischler, S., Schmutz, P., & Hauert, R. (2019). A methodology for characterizing the electrochemical stability of DLC coated interlayers and interfaces. Surface and Coatings Technology, 375, 402-413. https://doi.org/10.1016/j.surfcoat.2019.07.055
Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing
Kaushik, P., Eliáš, M., Michalička, J., Hegemann, D., Pytlíček, Z., Nečas, D., & Zajíčková, L. (2019). Atomic layer deposition of titanium dioxide on multi-walled carbon nanotubes for ammonia gas sensing. Surface and Coatings Technology, 370, 235-243. https://doi.org/10.1016/j.surfcoat.2019.04.031
Controlled Ag release from electrically conductive coating systems
Amberg, M., Vandenbossche, M., & Hegemann, D. (2018). Controlled Ag release from electrically conductive coating systems. Surface and Coatings Technology, 336, 29-33. https://doi.org/10.1016/j.surfcoat.2017.10.021
Ni nanocluster composites for enhanced impact resistance of multilayered arc-PVD ceramic coatings
Best, J. P., Polyakov, M., Shinde, D., Hörnqvist Colliander, M., Wehrs, J., Michler, J., & Morstein, M. (2018). Ni nanocluster composites for enhanced impact resistance of multilayered arc-PVD ceramic coatings. Surface and Coatings Technology, 354, 360-368. https://doi.org/10.1016/j.surfcoat.2018.07.102
Tunable ion flux density and its impact on AlN thin films deposited in a confocal DC magnetron sputtering system
Trant, M., Fischer, M., Thorwarth, K., Gauter, S., Patscheider, J., & Hug, H. J. (2018). Tunable ion flux density and its impact on AlN thin films deposited in a confocal DC magnetron sputtering system. Surface and Coatings Technology, 348, 159-167. https://doi.org/10.1016/j.surfcoat.2018.04.091
High temperature impact testing of a thin hard coating using a novel high-frequency <i>in situ</i> micromechanical device
Best, J. P., Guillonneau, G., Grop, S., Taylor, A. A., Frey, D., Longchamp, Q., … Michler, J. (2018). High temperature impact testing of a thin hard coating using a novel high-frequency in situ micromechanical device. Surface and Coatings Technology, 333, 178-186. https://doi.org/10.1016/j.surfcoat.2017.10.072
Electrodeposition of amorphous Fe-Cr-Ni stainless steel alloy with high corrosion resistance, low cytotoxicity and soft magnetic properties
Bertero, E., Hasegawa, M., Staubli, S., Pellicer, E., Herrmann, I. K., Sort, J., … Philippe, L. (2018). Electrodeposition of amorphous Fe-Cr-Ni stainless steel alloy with high corrosion resistance, low cytotoxicity and soft magnetic properties. Surface and Coatings Technology, 349, 745-751. https://doi.org/10.1016/j.surfcoat.2018.06.003
External magnetic field increases both plasma generation and deposition rate in HiPIMS
Ganesan, R., Akhavan, B., Dong, X., McKenzie, D. R., & Bilek, M. M. M. (2018). External magnetic field increases both plasma generation and deposition rate in HiPIMS. Surface and Coatings Technology, 352, 671-679. https://doi.org/10.1016/j.surfcoat.2018.02.076
 

Pages