Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Keywords = carbon nanotubes
Search Results 1 - 20 of 60
Select Page
Filtration and length determination of airborne carbon nanotubes in the submicrometer range using nanofiber filters
Bahk, Y. K., & Wang, J. (2014). Filtration and length determination of airborne carbon nanotubes in the submicrometer range using nanofiber filters. Aerosol and Air Quality Research, 14(5), 1352-1359. https://doi.org/10.4209/aaqr.2014.01.0025
Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds
Bahk, Y. K., He, X., Gitsis, E., Kuo, Y. Y., Kim, N., & Wang, J. (2015). Enhanced dispersion stability and mobility of carboxyl-functionalized carbon nanotubes in aqueous solutions through strong hydrogen bonds. Journal of Nanoparticle Research, 17, 396 (13 pp.). https://doi.org/10.1007/s11051-015-3203-2
Composites of multiwall carbon nanotubes and conducting polyaniline: bulk samples and films produced from a solution in chloroform
Baćani, M., Novak, M., Kokanović, I., & Babić, D. (2019). Composites of multiwall carbon nanotubes and conducting polyaniline: bulk samples and films produced from a solution in chloroform. Current Applied Physics, 19(7), 775-779. https://doi.org/10.1016/j.cap.2019.04.007
Heterostructure from PbS quantum dot and carbon nanotube inks for high-efficiency near-infrared light-emitting field-effect transistors
Bederak, D., Shulga, A., Kahmann, S., Talsma, W., Pelanskis, J., Dirin, D. N., … Loi, M. A. (2022). Heterostructure from PbS quantum dot and carbon nanotube inks for high-efficiency near-infrared light-emitting field-effect transistors. Advanced Electronic Materials, 8(7), 2101126 (7 pp.). https://doi.org/10.1002/aelm.202101126
Effects of carbon nanotubes on primary neurons and glial cells
Belyanskaya, L., Weigel, S., Hirsch, C., Tobler, U., Krug, H. F., & Wick, P. (2009). Effects of carbon nanotubes on primary neurons and glial cells. Neurotoxicology, 30(4), 702-711. https://doi.org/10.1016/j.neuro.2009.05.005
Microscopic analysis of performance variations in carbon nanotube field emission cathodes: implications for device optimization
Berhanu, S., Gröning, O., Chen, Z., Merikhi, J., Kaiser, M., Rupesinghe, N. L., & Bachmann, P. K. (2012). Microscopic analysis of performance variations in carbon nanotube field emission cathodes: implications for device optimization. Physica Status Solidi A: Applications and Materials, 209(11), 2114-2125. https://doi.org/10.1002/pssa.201228296
Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites
Bradbury, C. R., Gomon, J. K., Kollo, L., Kwon, H., & Leparoux, M. (2014). Hardness of Multi Wall Carbon Nanotubes reinforced aluminium matrix composites. Journal of Alloys and Compounds, 585, 362-367. https://doi.org/10.1016/j.jallcom.2013.09.142
Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion
Chakraborty, A. K., Plyhm, T., Barbezat, M., Necola, A., & Terrasi, G. P. (2011). Carbon nanotube (CNT)–epoxy nanocomposites: a systematic investigation of CNT dispersion. Journal of Nanoparticle Research, 13(12), 6493-6506. https://doi.org/10.1007/s11051-011-0552-3
A comparative study of different <I>in vitro</I> lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes
Clift, M. J. D., Endes, C., Vanhecke, D., Wick, P., Gehr, P., Schins, R. P. F., … Rothen-Rutishauser, B. (2014). A comparative study of different in vitro lung cell culture systems to assess the most beneficial tool for screening the potential adverse effects of carbon nanotubes. Toxicological Sciences, 137(1), 55-64. https://doi.org/10.1093/toxsci/kft216
CNT and PDCs: a fruitful association? Study of a polycarbosilane–MWCNT composite
Dalcanale, F., Grossenbacher, J., Blugan, G., Gullo, M. R., Brugger, J., Tevaearai, H., … Kuebler, J. (2015). CNT and PDCs: a fruitful association? Study of a polycarbosilane–MWCNT composite. Journal of the European Ceramic Society, 35(8), 2215-2224. https://doi.org/10.1016/j.jeurceramsoc.2015.02.016
There's plenty of room at the forum: potential risks and safety assessment of engineered nanomaterials
Fadeel, B., Kagan, V., Krug, H., Shvedova, A., Svartengren, M., Tran, L., & Wiklund, L. (2007). There's plenty of room at the forum: potential risks and safety assessment of engineered nanomaterials. Nanotoxicology, 1(2), 73-84. https://doi.org/10.1080/17435390701565578
Nanomanipulation in a scanning electron microscope
Fahlbusch, S., Mazerolle, S., Breguet, J. M., Steinecker, A., Agnus, J., Pérez, R., & Michler, J. (2005). Nanomanipulation in a scanning electron microscope. Journal of Materials Processing Technology, 167(2-3), 371-382. https://doi.org/10.1016/j.jmatprotec.2005.06.022
NanoHand: micro-nano system for automatic handling of nano-objects
Fatikow, S., Eichhorn, V., Sill, A., Steinecker, A., Meyer, C., Occhipinti, L., … Barth, W. (2007). NanoHand: micro-nano system for automatic handling of nano-objects. In L. Dong, Y. Katagiri, E. Higurashi, H. Toshiyoshi, & Y. A. Peter (Eds.), Proceedings of SPIE: Vol. 6717. Optomechatronic micro/nano devices and components III (p. 67170J (10 pp.). https://doi.org/10.1117/12.754400
Prospects and limitations of carbon nanotube field emission electron sources
Gröning, O., Clergereaux, R., Nilsson, L. O., Ruffieux, P., Gröning, P., & Schlapbach, L. (2002). Prospects and limitations of carbon nanotube field emission electron sources. Chimia, 56(10), 553-561. https://doi.org/10.2533/000942902777680081
The nucleation, radial growth, and bonding of TiO<sub>2</sub> deposited via atomic layer deposition on single-walled carbon nanotubes
Guerra-Nuñez, C., Putz, B., Savu, R., Li, M., Zhang, Y., Erni, R., … Utke, I. (2021). The nucleation, radial growth, and bonding of TiO2 deposited via atomic layer deposition on single-walled carbon nanotubes. Applied Surface Science, 555, 149662 (11 pp.). https://doi.org/10.1016/j.apsusc.2021.149662
Reviewing the environmental and human health knowledge base of carbon nanotubes
Helland, A., Wick, P., Koehler, A., Schmid, K., & Som, C. (2008). Reviewing the environmental and human health knowledge base of carbon nanotubes. Ciência & Saúde Coletiva, 13(2), 441-452. https://doi.org/10.1590/S1413-81232008000200019
Reviewing the environmental and human health knowledge base of carbon nanotubes
Helland, A., Wick, P., Koehler, A., Schmid, K., & Som, C. (2007). Reviewing the environmental and human health knowledge base of carbon nanotubes. Environmental Health Perspectives, 115(8), 1125-1131. https://doi.org/10.1289/ehp.9652
Life cycle assessment study of a field emission display television device
Hischier, R. (2015). Life cycle assessment study of a field emission display television device. International Journal of Life Cycle Assessment, 20(1), 61-73. https://doi.org/10.1007/s11367-014-0806-2
Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps
Hischier, R., & Walser, T. (2012). Life cycle assessment of engineered nanomaterials: state of the art and strategies to overcome existing gaps. Science of the Total Environment, 425, 271-282. https://doi.org/10.1016/j.scitotenv.2012.03.001
Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs
Ilari, G. M., Chawla, V., Matam, S., Zhang, Y., Michler, J., & Erni, R. (2016). Electron energy loss spectroscopy analysis of the interaction of Cr and V with MWCNTs. Micron, 84, 37-42. https://doi.org/10.1016/j.micron.2016.02.009