Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Keywords = electrospinning
Search Results 1 - 20 of 62

Pages

  • RSS Feed
Select Page
Role of electrospun fibers coated on magnetoimpedance effect of Co-based ribbons
Zare, M., Jamilpanah, L., Barough, V., Sadeghi, A., Ghanaatshoar, M., & Mohseni, M. (2024). Role of electrospun fibers coated on magnetoimpedance effect of Co-based ribbons. Applied Physics A: Materials Science and Processing, 130(2), 90 (8 pp.). https://doi.org/10.1007/s00339-023-07236-2
Electrospun (K,Na)NbO<sub>3</sub> piezoceramic fibers for self-powered tactile sensing application
Ichangi, A., Derichsweiler, C., Mathur, S., & Clemens, F. (2024). Electrospun (K,Na)NbO3 piezoceramic fibers for self-powered tactile sensing application. Advanced Engineering Materials, 26(1), 230166 (10 pp.). https://doi.org/10.1002/adem.202301066
Enhanced piezoelectric performance of electrospun PVDF-TrFE by polydopamine-assisted attachment of ZnO nanowires for impact force sensing
Chung, M., Diaz Sanchez, F. J., Schoeller, J., Stämpfli, R., Rossi, R. M., & Radacsi, N. (2023). Enhanced piezoelectric performance of electrospun PVDF-TrFE by polydopamine-assisted attachment of ZnO nanowires for impact force sensing. Macromolecular Materials and Engineering, 308(6), 2200520 (16 pp.). https://doi.org/10.1002/mame.202200520
The history of electrospinning: past, present, and future developments
Keirouz, A., Wang, Z., Reddy, V. S., Nagy, Z. K., Vass, P., Buzgo, M., … Radacsi, N. (2023). The history of electrospinning: past, present, and future developments. Advanced Materials Technologies, 8(11), 2201723 (34 pp.). https://doi.org/10.1002/admt.202201723
Functional fiber membranes with antibacterial properties for face masks
Natsathaporn, P., Herwig, G., Altenried, S., Ren, Q., Rossi, R. M., Crespy, D., & Itel, F. (2023). Functional fiber membranes with antibacterial properties for face masks. Advanced Fiber Materials, 5(4), 1519-1533. https://doi.org/10.1007/s42765-023-00291-7
Electrospinning of ZrO<sub>2</sub> fibers without sol-gel methods: effect of inorganic Zr-source on electrospinning properties and phase composition
Lusiola, T., Ichangi, A., Weil, D., Sebastian, T., Aneziris, C., Graule, T., & Clemens, F. (2023). Electrospinning of ZrO2 fibers without sol-gel methods: effect of inorganic Zr-source on electrospinning properties and phase composition. Open Ceramics, 13, 100324 (8 pp.). https://doi.org/10.1016/j.oceram.2022.100324
Sensing of KCl, NaCl, and pyocyanin with a MOF-decorated electrospun nitrocellulose matrix
Lüder, L., Nirmalraj, P. N., Neels, A., Rossi, R. M., & Calame, M. (2022). Sensing of KCl, NaCl, and pyocyanin with a MOF-decorated electrospun nitrocellulose matrix. ACS Applied Nano Materials, 6(4), 2854-2863. https://doi.org/10.1021/acsanm.2c05252
pH-responsive electrospun nanofibers and their applications
Schoeller, J., Itel, F., Wuertz-Kozak, K., Fortunato, G., & Rossi, R. M. (2022). pH-responsive electrospun nanofibers and their applications. Polymer Reviews, 62(2), 351-399. https://doi.org/10.1080/15583724.2021.1939372
Electrospun nanofibers for electrochemical reduction of CO&lt;sub&gt;2&lt;/sub&gt;: a mini review
Zong, X., Jin, Y., Liu, C., Yao, Y., Zhang, J., Luo, W., … Xiong, Y. (2021). Electrospun nanofibers for electrochemical reduction of CO2: a mini review. Electrochemistry Communications, 124, 106968 (8 pp.). https://doi.org/10.1016/j.elecom.2021.106968
pH-responsive chitosan/alginate polyelectrolyte complexes on electrospun PLGA nanofibers for controlled drug release
Schoeller, J., Itel, F., Wuertz-Kozak, K., Gaiser, S., Luisier, N., Hegemann, D., … Rossi, R. M. (2021). pH-responsive chitosan/alginate polyelectrolyte complexes on electrospun PLGA nanofibers for controlled drug release. Nanomaterials, 11(7), 1850 (16 pp.). https://doi.org/10.3390/nano11071850
Gallium complex-functionalized P4HB fibers: a trojan horse to fight bacterial infection
Müller, A., Fessele, C., Zuber, F., Rottmar, M., Maniura-Weber, K., Ren, Q., & Guex, A. G. (2021). Gallium complex-functionalized P4HB fibers: a trojan horse to fight bacterial infection. ACS Applied Bio Materials, 4(1), 682-691. https://doi.org/10.1021/acsabm.0c01221
Characterization and estimation of dielectric constant of electrospun BaTiO<sub>3</sub> nanofibers at different calcination temperatures using theoretical models
Hedayati, M., Taheri-Nassaj, E., Yourdkhani, A., Borlaf, M., Rasekh, S., Amirkhizi, P., … Clemens, F. J. (2021). Characterization and estimation of dielectric constant of electrospun BaTiO3 nanofibers at different calcination temperatures using theoretical models. Journal of the European Ceramic Society, 41(2), 1299-1309. https://doi.org/10.1016/j.jeurceramsoc.2020.09.072
Multi-scale structuring of cell-instructive cellulose nanocrystal composite hydrogel sheets via sequential electrospinning and thermal wrinkling
De France, K. J., Xu, F., Toufanian, S., Chan, K. J. W., Said, S., Stimpson, T. C., … Hoare, T. (2021). Multi-scale structuring of cell-instructive cellulose nanocrystal composite hydrogel sheets via sequential electrospinning and thermal wrinkling. Acta Biomaterialia, 128, 250-261. https://doi.org/10.1016/j.actbio.2021.04.044
Multifunctional mats by antimicrobial nanoparticles decoration for bioinspired smart wound dressing solutions
Avossa, J., Pota, G., Vitiello, G., Macagnano, A., Zanfardino, A., Di Napoli, M., … Luciani, G. (2021). Multifunctional mats by antimicrobial nanoparticles decoration for bioinspired smart wound dressing solutions. Materials Science and Engineering C: Biomimetic Materials, Sensors and Systems, 123, 111954 (11 pp.). https://doi.org/10.1016/j.msec.2021.111954
Bioresponsive hybrid nanofibers enable controlled drug delivery through glass transition switching at physiological temperature
Pan, F., Amarjargal, A., Altenried, S., Liu, M., Zuber, F., Zeng, Z., … Ren, Q. (2021). Bioresponsive hybrid nanofibers enable controlled drug delivery through glass transition switching at physiological temperature. ACS Applied Bio Materials, 4(5), 4271-4279. https://doi.org/10.1021/acsabm.1c00099
Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers
Chung, M., Skinner, W. H., Robert, C., Campbell, C. J., Rossi, R. M., Koutsos, V., & Radacsi, N. (2021). Fabrication of a wearable flexible sweat pH sensor based on SERS-active Au/TPU electrospun nanofibers. ACS Applied Materials and Interfaces, 13(43), 51504-51518. https://doi.org/10.1021/acsami.1c15238
Fabrication of cellulase catalysts immobilized on a nanoscale hybrid polyaniline/cationic hydrogel support for the highly efficient catalytic conversion of cellulose
Zarei, A., Alihosseini, F., Parida, D., Nazir, R., & Gaan, S. (2021). Fabrication of cellulase catalysts immobilized on a nanoscale hybrid polyaniline/cationic hydrogel support for the highly efficient catalytic conversion of cellulose. ACS Applied Materials and Interfaces, 13(42), 49816-49827. https://doi.org/10.1021/acsami.1c12263
Electrospinning of Y&lt;sub&gt;2&lt;/sub&gt;O&lt;sub&gt;3&lt;/sub&gt;- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment
Heuer, C., Storti, E., Graule, T., & Aneziris, C. G. (2020). Electrospinning of Y2O3- and MgO-stabilized zirconia nanofibers and characterization of the evolving phase composition and morphology during thermal treatment. Ceramics International, 46(8), 12001-12008. https://doi.org/10.1016/j.ceramint.2020.01.240
Synthesis of hydroxyapatite fibers using electrospinning: a study of phase evolution based on polymer matrix
Sebastian, T., Preisker, T. R., Gorjan, L., Graule, T., Aneziris, C. G., & Clemens, F. J. (2020). Synthesis of hydroxyapatite fibers using electrospinning: a study of phase evolution based on polymer matrix. Journal of the European Ceramic Society, 40(6), 2489-2496. https://doi.org/10.1016/j.jeurceramsoc.2020.01.070
Fungal melanin-based electrospun membranes for heavy metal detoxification of water
Tran-Ly, A. N., Ribera, J., Schwarze, F. W. M. R., Brunelli, M., & Fortunato, G. (2020). Fungal melanin-based electrospun membranes for heavy metal detoxification of water. Sustainable Materials and Technologies, 23, e00146 (10 pp.). https://doi.org/10.1016/j.susmat.2019.e00146
 

Pages