Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Keywords = nanocomposites
Search Results 1 - 20 of 58
Select Page
Transition metal oxide assisted quaternary nanoarchitectonics based composite towards enhanced electrochemical energy storage performance
Ghosh, S., Majumder, S., & Banerjee, S. (2023). Transition metal oxide assisted quaternary nanoarchitectonics based composite towards enhanced electrochemical energy storage performance. Applied Physics A: Materials Science and Processing, 129(5), 384 (11 pp.). https://doi.org/10.1007/s00339-023-06661-7
Laser assisted ink-printing of copper oxide nanoplates for memory device
Liu, H., Liu, Y., Guo, W., Zhou, X., Lin, L., & Peng, P. (2020). Laser assisted ink-printing of copper oxide nanoplates for memory device. Materials Letters, 261, 127097 (4 pp.). https://doi.org/10.1016/j.matlet.2019.127097
Direct co-deposition of mono-sized nanoparticles during sputtering
Polyakov, M. N., Schoeppner, R. L., Pethö, L., Edwards, T. E. J., Thomas, K., Könnyű, B., … Michler, J. (2020). Direct co-deposition of mono-sized nanoparticles during sputtering. Scripta Materialia, 186, 387-391. https://doi.org/10.1016/j.scriptamat.2020.05.032
Polymer-assisted in-situ thermal reduction of silver precursors: a solventless route for silver nanoparticles-polymer composites
Parida, D., Simonetti, P., Frison, R., Bülbül, E., Altenried, S., Arroyo, Y., … Gaan, S. (2020). Polymer-assisted in-situ thermal reduction of silver precursors: a solventless route for silver nanoparticles-polymer composites. Chemical Engineering Journal, 389, 123983 (12 pp.). https://doi.org/10.1016/j.cej.2019.123983
Piezoresistive carbon-based composites for sensor applications: effects of polarity and non-rubber components on shape recovery
Nakaramontri, Y., Kummerlöwe, C., Nakason, C., Pichaiyut, S., Wisunthon, S., & Clemens, F. (2020). Piezoresistive carbon-based composites for sensor applications: effects of polarity and non-rubber components on shape recovery. eXPRESS Polymer Letters, 14(10), 970-986. https://doi.org/10.3144/expresspolymlett.2020.79
Effects of combining graphene nanoplatelet and phosphorous flame retardant as additives on mechanical properties and flame retardancy of epoxy nanocomposite
Netkueakul, W., Fischer, B., Walder, C., Nüesch, F., Rees, M., Jovic, M., … Wang, J. (2020). Effects of combining graphene nanoplatelet and phosphorous flame retardant as additives on mechanical properties and flame retardancy of epoxy nanocomposite. Polymers, 12(10), 2349 (19 pp.). https://doi.org/10.3390/polym12102349
MXene materials for designing advanced separation membranes
Karahan, H. E., Goh, K., Zhang, C., Yang, E., Yıldırım, C., Chuah, C. Y., … Bae, T. H. (2020). MXene materials for designing advanced separation membranes. Advanced Materials, 32(29), 1906697 (23 pp.). https://doi.org/10.1002/adma.201906697
Modification of interfacial interactions in ceramic-polymer nanocomposites by grafting: morphology and properties for powder injection molding and additive manufacturing
Cano, S., Gooneie, A., Kukla, C., Rieß, G., Holzer, C., & Gonzalez-Gutierrez, J. (2020). Modification of interfacial interactions in ceramic-polymer nanocomposites by grafting: morphology and properties for powder injection molding and additive manufacturing. Applied Sciences, 10(4), 1471 (18 pp.). https://doi.org/10.3390/app10041471
Spectroscopic investigation of laser produced plasma of carbon nanotube reinforced AlMg5 metal matrix nanocomposites
Mohanta, A., & Leparoux, M. (2019). Spectroscopic investigation of laser produced plasma of carbon nanotube reinforced AlMg5 metal matrix nanocomposites. Optics and Lasers in Engineering, 121, 37-45. https://doi.org/10.1016/j.optlaseng.2019.03.007
Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks
Ibáñez, M., Genç, A., Hasler, R., Liu, Y., Dobrozhan, O., Nazarenko, O., … Kovalenko, M. V. (2019). Tuning transport properties in thermoelectric nanocomposites through inorganic ligands and heterostructured building blocks. ACS Nano, 13(6), 6572-6580. https://doi.org/10.1021/acsnano.9b00346
Bacterially produced, nacre-inspired composite materials
Spiesz, E. M., Schmieden, D. T., Grande, A. M., Liang, K., Schwiedrzik, J., Natalio, F., … Meyer, A. S. (2019). Bacterially produced, nacre-inspired composite materials. Small, 15(22), 1805312 (6 pp.). https://doi.org/10.1002/smll.201805312
Silicon oxycarbide—tin nanocomposite as a high‐power‐density anode for Li‐ion batteries
Dubey, R. J. ‐C., Vallachira Warriam Sasikumar, P., Krumeich, F., Blugan, G., Kuebler, J., Kravchyk, K. V., … Kovalenko, M. V. (2019). Silicon oxycarbide—tin nanocomposite as a high‐power‐density anode for Li‐ion batteries. Advanced Science, 6(19), 1901220 (9 pp.). https://doi.org/10.1002/advs.201901220
Production of improved SiC and SiCN ceramics from polycarbosilane and polysilazane composites
Clark Ligon, S., Blugan, G., Dalcanale, F., & Kuebler, J. (2018). Production of improved SiC and SiCN ceramics from polycarbosilane and polysilazane composites. AIP conference proceedings: Vol. 1981. (p. 020037 (4 pp.). Presented at the 9th international conference on times of polymers and composites: from aerospace to nanotechnology. https://doi.org/10.1063/1.5045899
A review on new mesostructured composite materials: part II. characterization and properties of polymer–mesoporous silica nanocomposite
Salimian, S., Zadhoush, A., & Mohammadi, A. (2018). A review on new mesostructured composite materials: part II. characterization and properties of polymer–mesoporous silica nanocomposite. Journal of Reinforced Plastics and Composites, 37(11), 738-769. https://doi.org/10.1177/0731684418760205
Solid state processing of aluminum matrix composites reinforced with nanoparticulate materials
Leparoux, M., Kollo, L., Kwon, H., Kallip, K., Babu, N. K., AlOgab, K., & Talari, M. K. (2018). Solid state processing of aluminum matrix composites reinforced with nanoparticulate materials. Advanced Engineering Materials, 20(11), 1800401 (18 pp.). https://doi.org/10.1002/adem.201800401
All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels
Wang, J., Chiappone, A., Roppolo, I., Shao, F., Fantino, E., Lorusso, M., … Grützmacher, H. (2018). All-in-one cellulose nanocrystals for 3D printing of nanocomposite hydrogels. Angewandte Chemie International Edition, 57(9), 2353-2356. https://doi.org/10.1002/anie.201710951
Operation by optoelectronic features of cadmium sulphide nanocrystallites embedded into the photopolymer polyvinyl alcohol matrices
Ozga, K., Yanchuk, O. M., Tsurkova, L. V., Marchuk, O. V., Urubkov, I. V., Romanyuk, Y. E., … Kityk, I. V. (2018). Operation by optoelectronic features of cadmium sulphide nanocrystallites embedded into the photopolymer polyvinyl alcohol matrices. Applied Surface Science, 446, 209-214. https://doi.org/10.1016/j.apsusc.2018.01.164
Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network
Follain, N., Belbekhouche, S., Bras, J., Siqueira, G., Chappey, C., Marais, S., & Dufresne, A. (2018). Tunable gas barrier properties of filled-PCL film by forming percolating cellulose network. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 545, 26-30. https://doi.org/10.1016/j.colsurfa.2018.02.040
Atomic-force microscopy investigations on fracture surfaces of inorganic, fullerene-like WS<sub>2</sub> (IF-WS<sub>2</sub>)–epoxy nanocomposites
Haba, D., Brunner, A. J., & Teichert, C. (2017). Atomic-force microscopy investigations on fracture surfaces of inorganic, fullerene-like WS2 (IF-WS2)–epoxy nanocomposites. Macromolecular Symposia, 373(1), 1600127 (8 pp.). https://doi.org/10.1002/masy.201600127
Length controlled kinetics of self-assembly of bidisperse nanotubes/nanorods in polymers
Gooneie, A., Sapkota, J., Shirole, A., & Holzer, C. (2017). Length controlled kinetics of self-assembly of bidisperse nanotubes/nanorods in polymers. Polymer, 118, 236-248. https://doi.org/10.1016/j.polymer.2017.05.010