Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Keywords = perovskites
Search Results 1 - 20 of 59
Select Page
Strong light-matter coupling in lead halide perovskite quantum dot solids
Bujalance, C., Caliò, L., Dirin, D. N., Tiede, D. O., Galisteo-López, J. F., Feist, J., … Míguez, H. (2024). Strong light-matter coupling in lead halide perovskite quantum dot solids. ACS Nano, 18(6), 4922-4931. https://doi.org/10.1021/acsnano.3c10358
Growth and self-assembly of CsPbBr<sub>3 </sub>nanocrystals in the TOPO/PbBr<sub>2</sub> synthesis as seen with X-ray scattering
Montanarella, F., Akkerman, Q. A., Bonatz, D., van der Sluijs, M. M., van der Bok, J. C., Prins, P. T., … Kovalenko, M. V. (2023). Growth and self-assembly of CsPbBr3 nanocrystals in the TOPO/PbBr2 synthesis as seen with X-ray scattering. Nano Letters, 23(2), 667-676. https://doi.org/10.1021/acs.nanolett.2c04532
Understanding the growth mechanism of BaZrS<sub>3</sub> chalcogenide perovskite thin films from sulfurized oxide precursors
Ramanandan, S. P., Giunto, A., Stutz, E. Z., Reynier, B., Lefevre, I. T. F. M., Rusu, M., … Dimitrievska, M. (2023). Understanding the growth mechanism of BaZrS3 chalcogenide perovskite thin films from sulfurized oxide precursors. Journal of Physics: Energy, 5(1), 014013 (14 pp.). https://doi.org/10.1088/2515-7655/aca9fe
Strongly confined CsPbBr<sub>3</sub> quantum dots as quantum emitters and building blocks for rhombic superlattices
Boehme, S. C., Bodnarchuk, M. I., Burian, M., Bertolotti, F., Cherniukh, I., Bernasconi, C., … Kovalenko, M. V. (2023). Strongly confined CsPbBr3 quantum dots as quantum emitters and building blocks for rhombic superlattices. ACS Nano, 17(3), 2089-2100. https://doi.org/10.1021/acsnano.2c07677
Single-crystal perovskite solar cells exhibit close to half a millimeter electron-diffusion length
Turedi, B., Lintangpradipto, M. N., Sandberg, O. J., Yazmaciyan, A., Matt, G. J., Alsalloum, A. Y., … Bakr, O. M. (2022). Single-crystal perovskite solar cells exhibit close to half a millimeter electron-diffusion length. Advanced Materials, 34(47), 2202390 (9 pp.). https://doi.org/10.1002/adma.202202390
Laser patterned flexible 4T perovskite‐Cu(In,Ga)Se<sub>2</sub> tandem mini‐module with over 18% efficiency
Kothandaraman, R. K., Lai, H., Aribia, A., Nishiwaki, S., Siegrist, S., Krause, M., … Fu, F. (2022). Laser patterned flexible 4T perovskite‐Cu(In,Ga)Se2 tandem mini‐module with over 18% efficiency. Solar RRL, 6(9), 2200392 (11 pp.). https://doi.org/10.1002/solr.202200392
Lead-dominated hyperfine interaction impacting the carrier spin dynamics in halide perovskites
Kirstein, E., Yakovlev, D. R., Glazov, M. M., Evers, E., Zhukov, E. A., Belykh, V. V., … Bayer, M. (2022). Lead-dominated hyperfine interaction impacting the carrier spin dynamics in halide perovskites. Advanced Materials, 34(1), 2105263 (8 pp.). https://doi.org/10.1002/adma.202105263
Surface functionalization of CsPbBr<sub>3</sub> nanocrystals for photonic applications
Manoli, A., Papagiorgis, P., Sergides, M., Bernasconi, C., Athanasiou, M., Pozov, S., … Itskos, G. (2021). Surface functionalization of CsPbBr3 nanocrystals for photonic applications. ACS Applied Nano Materials, 4(5), 5084-5097. https://doi.org/10.1021/acsanm.1c00558
Perovskite quantum dots for super-resolution optical microscopy: where strong photoluminescence blinking matters
Feld, L. G., Shynkarenko, Y., Krieg, F., Rainò, G., & Kovalenko, M. V. (2021). Perovskite quantum dots for super-resolution optical microscopy: where strong photoluminescence blinking matters. Advanced Optical Materials, 9(18), 2100620 (9 pp.). https://doi.org/10.1002/adom.202100620
Cataluminescence in Er-Substituted perovskites
Borgschulte, A., Sambalova, O., Billeter, E., Sterzi, A., Niggli, J., Welte, B., … Holzner, R. (2021). Cataluminescence in Er-Substituted perovskites. Advanced Science, 8(19), 210764 (8 pp.). https://doi.org/10.1002/advs.202101764
Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid
Gao, X. X., Ding, B., Kanda, H., Fei, Z., Luo, W., Zhang, Y., … Nazeeruddin, M. K. (2021). Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid. Cell Reports Physical Science, 2(7), 100475 (15 pp.). https://doi.org/10.1016/j.xcrp.2021.100475
CsPbBr&lt;sub&gt;3&lt;/sub&gt; nanocrystal films: deviations from bulk vibrational and optoelectronic properties
Motti, S. G., Krieg, F., Ramadan, A. J., Patel, J. B., Snaith, H. J., Kovalenko, M. V., … Herz, L. M. (2020). CsPbBr3 nanocrystal films: deviations from bulk vibrational and optoelectronic properties. Advanced Functional Materials, 30(19), 1909904 (9 pp.). https://doi.org/10.1002/adfm.201909904
Unraveling the origin of the long fluorescence decay component of cesium lead halide perovskite nanocrystals
Becker, M. A., Bernasconi, C., Bodnarchuk, M. I., Rainò, G., Kovalenko, M. V., Norris, D. J., … Stöferle, T. (2020). Unraveling the origin of the long fluorescence decay component of cesium lead halide perovskite nanocrystals. ACS Nano, 14(11), 14939-14946. https://doi.org/10.1021/acsnano.0c04401
Robust hydrophobic and hydrophilic polymer fibers sensitized by inorganic and hybrid lead halide perovskite nanocrystal emitters
Papagiorgis, P. G., Manoli, A., Alexiou, A., Karacosta, P., Karagiorgis, X., Papaparaskeva, G., … Itskos, G. (2019). Robust hydrophobic and hydrophilic polymer fibers sensitized by inorganic and hybrid lead halide perovskite nanocrystal emitters. Frontiers in Chemistry, 7, 87 (12 pp.). https://doi.org/10.3389/fchem.2019.00087
Unraveling the radiative pathways of hot carriers upon intense photoexcitation of lead halide perovskite nanocrystals
Papagiorgis, P., Manoli, A., Michael, S., Bernasconi, C., Bodnarchuk, M. I., Kovalenko, M. V., … Itskos, G. (2019). Unraveling the radiative pathways of hot carriers upon intense photoexcitation of lead halide perovskite nanocrystals. ACS Nano, 13(5), 5799-5809. https://doi.org/10.1021/acsnano.9b01398
Modifying La&lt;sub&gt;0.6&lt;/sub&gt;Sr&lt;sub&gt;0.4&lt;/sub&gt;MnO&lt;sub&gt;3&lt;/sub&gt; perovskites with Cr incorporation for fast isothermal CO&lt;sub&gt;2&lt;/sub&gt;‐splitting kinetics in solar‐driven thermochemical cycles
Carrillo, A. J., Bork, A. H., Moser, T., Sediva, E., Hood, Z. D., & Rupp, J. L. M. (2019). Modifying La0.6Sr0.4MnO3 perovskites with Cr incorporation for fast isothermal CO2‐splitting kinetics in solar‐driven thermochemical cycles. Advanced Energy Materials, 9(28), 1803886 (13 pp.). https://doi.org/10.1002/aenm.201803886
Energy transfer from perovskite nanocrystals to dye molecules does not occur by FRET
Hofmann, F. J., Bodnarchuk, M. I., Dirin, D. N., Vogelsang, J., Kovalenko, M. V., & Lupton, J. M. (2019). Energy transfer from perovskite nanocrystals to dye molecules does not occur by FRET. Nano Letters, 19(12), 8896-8902. https://doi.org/10.1021/acs.nanolett.9b03779
Material dimensionality effects on electron transfer rates between CsPbBr<sub>3</sub> and CdSe nanoparticles
Brumberg, A., Diroll, B. T., Nedelcu, G., Sykes, M. E., Liu, Y., Harvey, S. M., … Schaller, R. D. (2018). Material dimensionality effects on electron transfer rates between CsPbBr3 and CdSe nanoparticles. Nano Letters, 18(8), 4771-4776. https://doi.org/10.1021/acs.nanolett.8b01238
Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals
Papagiorgis, P., Manoli, A., Protesescu, L., Achilleos, C., Violaris, M., Nicolaides, K., … Itskos, G. (2018). Efficient optical amplification in the nanosecond regime from formamidinium lead iodide nanocrystals. ACS Photonics, 5(3), 907-917. https://doi.org/10.1021/acsphotonics.7b01159
Solution-processed low-bandgap CuIn(S,Se)<sub>2</sub> absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells
Uhl, A. R., Rajagopal, A., Clark, J. A., Murray, A., Feurer, T., Buecheler, S., … Hillhouse, H. W. (2018). Solution-processed low-bandgap CuIn(S,Se)2 absorbers for high-efficiency single-junction and monolithic chalcopyrite-perovskite tandem solar cells. Advanced Energy Materials, 8(27), 1801254 (8 pp.). https://doi.org/10.1002/aenm.201801254