Active Filters

  • (-) Keywords ≠ microcavities
  • (-) Keywords = solar cells
Search Results 1 - 20 of 43
Select Page
Substoichiometric mixing of metal halide powders and their single-source evaporation for perovskite photovoltaics
Guesnay, Q., McMonagle, C. J., Chernyshov, D., Zia, W., Wieczorek, A., Siol, S., … Wolff, C. M. (2023). Substoichiometric mixing of metal halide powders and their single-source evaporation for perovskite photovoltaics. ACS Photonics, 10(9), 3087-3094. https://doi.org/10.1021/acsphotonics.3c00438
Mismatch of quasi–fermi level splitting and V<sub>oc</sub> in perovskite solar cells
Warby, J., Shah, S., Thiesbrummel, J., Gutierrez-Partida, E., Lai, H., Alebachew, B., … Stolterfoht, M. (2023). Mismatch of quasi–fermi level splitting and Voc in perovskite solar cells. Advanced Energy Materials, 13(48), 2303135 (12 pp.). https://doi.org/10.1002/aenm.202303135
Single-crystal perovskite solar cells exhibit close to half a millimeter electron-diffusion length
Turedi, B., Lintangpradipto, M. N., Sandberg, O. J., Yazmaciyan, A., Matt, G. J., Alsalloum, A. Y., … Bakr, O. M. (2022). Single-crystal perovskite solar cells exhibit close to half a millimeter electron-diffusion length. Advanced Materials, 34(47), 2202390 (9 pp.). https://doi.org/10.1002/adma.202202390
How band tail recombination influences the open‐circuit voltage of solar cells
Wolter, M. H., Carron, R., Avancini, E., Bissig, B., Weiss, T. P., Nishiwaki, S., … Siebentritt, S. (2022). How band tail recombination influences the open‐circuit voltage of solar cells. Progress in Photovoltaics, 30(7), 702-712. https://doi.org/10.1002/pip.3449
Scalable PbS quantum dot solar cell production by blade coating from stable inks
Sukharevska, N., Bederak, D., Goossens, V. M., Momand, J., Duim, H., Dirin, D. N., … Loi, M. A. (2021). Scalable PbS quantum dot solar cell production by blade coating from stable inks. ACS Applied Materials and Interfaces, 13(4), 5195-5207. https://doi.org/10.1021/acsami.0c18204
Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid
Gao, X. X., Ding, B., Kanda, H., Fei, Z., Luo, W., Zhang, Y., … Nazeeruddin, M. K. (2021). Engineering long-term stability into perovskite solar cells via application of a multi-functional TFSI-based ionic liquid. Cell Reports Physical Science, 2(7), 100475 (15 pp.). https://doi.org/10.1016/j.xcrp.2021.100475
Scalable fabrication of efficient p-n junction lead sulfide quantum dot solar cells
Goossens, V. M., Sukharevska, N. V., Dirin, D. N., Kovalenko, M. V., & Loi, M. A. (2021). Scalable fabrication of efficient p-n junction lead sulfide quantum dot solar cells. Cell Reports Physical Science, 2(12), 100655 (15 pp.). https://doi.org/10.1016/j.xcrp.2021.100655
Quantifying the elemental distribution in solar cells from X-Ray fluorescence measurements with multiple detector modules
Ziska, C., Ossig, C., Pyrlik, N., Carron, R., Avancini, E., Fevola, G., … Stuckelberger, M. E. (2020). Quantifying the elemental distribution in solar cells from X-Ray fluorescence measurements with multiple detector modules. In 47th IEEE Photovoltaic Specialists Conference (PVSC 2020) (pp. 1085-1092). https://doi.org/10.1109/PVSC45281.2020.9300345
Review of CdTe&lt;sub&gt;1&lt;/sub&gt;−&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt;Se&lt;sub&gt;&lt;em&gt;x&lt;/em&gt;&lt;/sub&gt; thin films in solar cell applications
Lingg, M., Buecheler, S., & Tiwari, A. N. (2019). Review of CdTe1xSex thin films in solar cell applications. Coatings, 9(8), 520 (14 pp.). https://doi.org/10.3390/coatings9080520
Dopant-induced modifications of Ga<sub>x</sub>In<sub>(1−x)</sub>P nanowire-based p−n junctions monolithically integrated on Si(111)
Bologna, N., Wirths, S., Francaviglia, L., Campanini, M., Schmid, H., Theofylaktopoulos, V., … Rossell, M. D. (2018). Dopant-induced modifications of GaxIn(1−x)P nanowire-based p−n junctions monolithically integrated on Si(111). ACS Applied Materials and Interfaces, 10(38), 32588-32596. https://doi.org/10.1021/acsami.8b10770
Enhancing quantum dot solar cells stability with a semiconducting single-walled carbon nanotubes interlayer below the top anode
Salazar-Rios, J. M., Sukharevska, N., Speirs, M. J., Jung, S., Dirin, D., Dragoman, R. M., … Loi, M. A. (2018). Enhancing quantum dot solar cells stability with a semiconducting single-walled carbon nanotubes interlayer below the top anode. Advanced Materials Interfaces, 5(22), 1801155 (6 pp.). https://doi.org/10.1002/admi.201801155
A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique
Vishwakarma, M., Varandani, D., Andres, C., Romanyuk, Y. E., Haass, S. G., Tiwari, A. N., & Mehta, B. R. (2018). A direct measurement of higher photovoltage at grain boundaries in CdS/ CZTSe solar cells using KPFM technique. Solar Energy Materials and Solar Cells, 183, 34-40. https://doi.org/10.1016/j.solmat.2018.01.040
Alkali treatments of Cu(In,Ga)Se<small><sub>2</sub></small> thin‐film absorbers and their impact on transport barriers
Werner, F., Wolter, M. H., Siebentritt, S., Sozzi, G., Di Napoli, S., Menozzi, R., … Buecheler, S. (2018). Alkali treatments of Cu(In,Ga)Se2 thin‐film absorbers and their impact on transport barriers. Progress in Photovoltaics, 26(11), 911-923. https://doi.org/10.1002/pip.3032
Refractive indices of layers and optical simulations of Cu(In,Ga)Se<sub>2</sub> solar cells
Carron, R., Avancini, E., Feurer, T., Bissig, B., Losio, P. A., Figi, R., … Tiwari, A. N. (2018). Refractive indices of layers and optical simulations of Cu(In,Ga)Se2 solar cells. Science and Technology of Advanced Materials, 19(1), 396-410. https://doi.org/10.1080/14686996.2018.1458579
Comparing halide ligands in PbS colloidal quantum dots for field-effect transistors and solar cells
Bederak, D., Balazs, D. M., Sukharevska, N. V., Shulga, A. G., Abdu-Aguye, M., Dirin, D. N., … Loi, M. A. (2018). Comparing halide ligands in PbS colloidal quantum dots for field-effect transistors and solar cells. ACS Applied Nano Materials, 1(12), 6882-6889. https://doi.org/10.1021/acsanm.8b01696
Progress in thin film CIGS photovoltaics – research and development, manufacturing, and applications
Feurer, T., Reinhard, P., Avancini, E., Bissig, B., Löckinger, J., Fuchs, P., … Tiwari, A. N. (2017). Progress in thin film CIGS photovoltaics – research and development, manufacturing, and applications. Progress in Photovoltaics, 25(7), 645-667. https://doi.org/10.1002/pip.2811
Complex metal borohydrides: multifunctional materials for energy storage and conversion
Mohtadi, R., Remhof, A., & Jena, P. (2016). Complex metal borohydrides: multifunctional materials for energy storage and conversion. Journal of Physics: Condensed Matter, 28(35), 353001 (19 pp.). https://doi.org/10.1088/0953-8984/28/35/353001
Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu<sub>2</sub>ZnSnSe<sub>4</sub> kesterite solar cells
Márquez, J., Neuschitzer, M., Dimitrievska, M., Gunder, R., Haass, S., Werner, M., … Forbes, I. (2016). Systematic compositional changes and their influence on lattice and optoelectronic properties of Cu2ZnSnSe4 kesterite solar cells. Solar Energy Materials and Solar Cells, 144, 579-585. https://doi.org/10.1016/j.solmat.2015.10.004
Cu<SUB>2</SUB>ZnSn(S,Se)<SUB>4</SUB> solar cell absorbers processed from Na-containing solutions in DMSO
Werner, M., Sutter-Fella, C. M., Hagendorfer, H., Romanyuk, Y. E., & Tiwari, A. N. (2015). Cu2ZnSn(S,Se)4 solar cell absorbers processed from Na-containing solutions in DMSO. Physica Status Solidi A: Applications and Materials, 212(1), 116-120. https://doi.org/10.1002/pssa.201431146
Cu(In,Ga)Se<SUB>2</SUB> thin-film solar cells and modules―a boost in efficiency due to potassium
Reinhard, P., Pianezzi, F., Bissig, B., Chirilǎ, A., Blösch, P., Nishiwaki, S., … Tiwari, A. N. (2015). Cu(In,Ga)Se2 thin-film solar cells and modules―a boost in efficiency due to potassium. IEEE Journal of Photovoltaics, 5(2), 656-663. https://doi.org/10.1109/JPHOTOV.2014.2377516