Active Filters

  • (-) Keywords ≠ piezoresistive material
  • (-) Empa Laboratories = 404 Biointerfaces
Search Results 1 - 20 of 412

Pages

  • RSS Feed
Select Page
<em>In vitro</em> investigations of a novel wound dressing concept based on biodegradable polyurethane
Rottmar, M., Richter, M., Mäder, X., Grieder, K., Nuss, K., Karol, A., … Bruinink, A. (2015). In vitro investigations of a novel wound dressing concept based on biodegradable polyurethane. Science and Technology of Advanced Materials, 16(3), 034606 (10 pp.). https://doi.org/10.1088/1468-6996/16/3/034606
2D foam film coating of antimicrobial lysozyme amyloid fibrils onto cellulose nanopapers
Kummer, N., Huguenin-Elie, L., Zeller, A., Chandorkar, Y., Schoeller, J., Zuber, F., … Nyström, G. (2023). 2D foam film coating of antimicrobial lysozyme amyloid fibrils onto cellulose nanopapers. Nanoscale Advances, 5(19), 5276-8285. https://doi.org/10.1039/d3na00370a
3D composite assemblies of microparticles and nanofibers for tailored wettability and controlled drug delivery
Lavielle, N., Hébraud, A., Thöny-Meyer, L., Rossi, R. M., & Schlatter, G. (2017). 3D composite assemblies of microparticles and nanofibers for tailored wettability and controlled drug delivery. Macromolecular Materials and Engineering, 302(8), 1600458 (8 pp.). https://doi.org/10.1002/mame.201600458
3D printed enzymatically biodegradable soft helical microswimmers
Wang, X., Qin, X. H., Hu, C., Terzopoulou, A., Chen, X. Z., Huang, T. Y., … Nelson, B. J. (2018). 3D printed enzymatically biodegradable soft helical microswimmers. Advanced Functional Materials, 28(45), 1804107 (8pp.). https://doi.org/10.1002/adfm.201804107
3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications
Giubilini, A., Messori, M., Bondioli, F., Minetola, P., Iuliano, L., Nyström, G., … Siqueira, G. (2023). 3D-printed poly(3-hydroxybutyrate-co-3-hydroxyhexanoate)-cellulose-based scaffolds for biomedical applications. Biomacromolecules, 24(9), 3961-3971. https://doi.org/10.1021/acs.biomac.3c00263
<I> Bacillus pumilus </I>laccase: a heat stable enzyme with a wide substrate spectrum
Reiss, R., Ihssen, J., & Thöny-Meyer, L. (2011). Bacillus pumilus laccase: a heat stable enzyme with a wide substrate spectrum. BMC Biotechnology, 11, 9 (11 pp.). https://doi.org/10.1186/1472-6750-11-9
<I>In vitro</I> mechanistic study towards a better understanding of ZnO nanoparticle toxicity
Buerki-Thurnherr, T., Xiao, L., Diener, L., Arslan, O., Hirsch, C., Maeder-Althaus, X., … Krug, H. F. (2013). In vitro mechanistic study towards a better understanding of ZnO nanoparticle toxicity. Nanotoxicology, 7(4), 402-416. https://doi.org/10.3109/17435390.2012.666575
<I>In vivo</I> production of a novel glycoconjugate vaccine against <I>Shigella flexneri</I> 2a in recombinant <I>Escherichia coli:</I> identification of stimulating factors for <I>in vivo</I> glycosylation
Kämpf, M. M., Braun, M., Sirena, D., Ihssen, J., Thöny-Meyer, L., & Ren, Q. (2015). In vivo production of a novel glycoconjugate vaccine against Shigella flexneri 2a in recombinant Escherichia coli: identification of stimulating factors for in vivo glycosylation. Microbial Cell Factories, 14, 12 (12 pp.). https://doi.org/10.1186/s12934-015-0195-7
<em>In vitro</em> biofilm models for device-related infections
Buhmann, M. T., Stiefel, P., Maniura-Weber, K., & Ren, Q. (2016). In vitro biofilm models for device-related infections. Trends in Biotechnology, 34(12), 945-948. https://doi.org/10.1016/j.tibtech.2016.05.016
A FRET-based biosensor for the detection of neutrophil elastase
Schulenburg, C., Faccio, G., Jankowska, D., Maniura-Weber, K., & Richter, M. (2016). A FRET-based biosensor for the detection of neutrophil elastase. Analyst, 141(5), 1645-1648. https://doi.org/10.1039/C5AN01747E
A bioinspired ultraporous nanofiber-hydrogel mimic of the cartilage extracellular matrix
Formica, F. A., Öztürk, E., Hess, S. C., Stark, W. J., Maniura-Weber, K., Rottmar, M., & Zenobi-Wong, M. (2016). A bioinspired ultraporous nanofiber-hydrogel mimic of the cartilage extracellular matrix. Advanced Healthcare Materials, 5(24), 3129-3138. https://doi.org/10.1002/adhm.201600867
A compliant and biomimetic three-layered vascular graft for small blood vessels
Zhang, Y., Li, X. S., Guex, A. G., Liu, S. S., Müller, E., Innocenti Malini, R., … Spano, F. (2017). A compliant and biomimetic three-layered vascular graft for small blood vessels. Biofabrication, 9(2), 025010 (14 pp.). https://doi.org/10.1088/1758-5090/aa6bae
A forgotten fact about the standard deviation
Roesslein, M., Wolf, M., Wampfler, B., & Wegscheider, W. (2007). A forgotten fact about the standard deviation. Accreditation and Quality Assurance, 12(9), 495-496. https://doi.org/10.1007/s00769-007-0285-2
A low-fouling, self-assembled, graft co-polymer and covalent surface coating for controlled immobilization of biologically active moieties
Mertgen, A. S., Guex, A. G., Tosatti, S., Fortunato, G., Rossi, R. M., Rottmar, M., … Zürcher, S. (2022). A low-fouling, self-assembled, graft co-polymer and covalent surface coating for controlled immobilization of biologically active moieties. Applied Surface Science, 584, 152525 (12 pp.). https://doi.org/10.1016/j.apsusc.2022.152525
A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions
Straub, H., Eberl, L., Zinn, M., Rossi, R. M., Maniura-Weber, K., & Ren, Q. (2020). A microfluidic platform for in situ investigation of biofilm formation and its treatment under controlled conditions. Journal of Nanobiotechnology, 18, 166 (12 pp.). https://doi.org/10.1186/s12951-020-00724-0
A micropatterning approach to study the influence of actin cytoskeletal organization on polystyrene nanoparticle uptake by BeWo cells
Muoth, C., Rottmar, M., Schipanski, A., Gmuender, C., Maniura-Weber, K., Wick, P., & Buerki-Thurnherr, T. (2016). A micropatterning approach to study the influence of actin cytoskeletal organization on polystyrene nanoparticle uptake by BeWo cells. RSC Advances, 6(76), 72827-72835. https://doi.org/10.1039/C6RA13782B
A nanolayer coating on polydimethylsiloxane surfaces enables a mechanistic study of bacterial adhesion influenced by material surface physicochemistry
Pan, F., Altenried, S., Liu, M., Hegemann, D., Bülbül, E., Moeller, J., … Ren, Q. (2020). A nanolayer coating on polydimethylsiloxane surfaces enables a mechanistic study of bacterial adhesion influenced by material surface physicochemistry. Materials Horizons, 7(1), 93-103. https://doi.org/10.1039/C9MH01191A
A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level
Weishaupt, R., Siqueira, G., Schubert, M., Kämpf, M. M., Zimmermann, T., Maniura-Weber, K., & Faccio, G. (2017). A protein-nanocellulose paper for sensing copper ions at the nano- to micromolar level. Advanced Functional Materials, 27(4), 1604291 (10 pp.). https://doi.org/10.1002/adfm.201604291
A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters
Pan, F., Altenried, S., Scheibler, S., & Ren, Q. (2024). A rapid and specific antimicrobial resistance detection of Escherichia coli via magnetic nanoclusters. Nanoscale, 16(6), 3011-3023. https://doi.org/10.1039/d3nr05463b
A reduction in growth rate of <I>Pseudomonas putida</I> KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate
Follonier, S., Panke, S., & Zinn, M. (2011). A reduction in growth rate of Pseudomonas putida KT2442 counteracts productivity advances in medium-chain-length polyhydroxyalkanoate production from gluconate. Microbial Cell Factories, 10, 25 (11 pp.). https://doi.org/10.1186/1475-2859-10-25
 

Pages