Active Filters

  • (-) Keywords ≠ textile sensor structure
  • (-) Journal = Nano Letters
Search Results 1 - 20 of 79

Pages

  • RSS Feed
Select Page
Highly conductive single-molecule wires with controlled orientation by coordination of metalloporphyrins
Aragonès, A. C., Darwish, N., Saletra, W. J., Pérez-García, L., Sanz, F., Puigmartí-Luis, J., … Díez-Pérez, I. (2014). Highly conductive single-molecule wires with controlled orientation by coordination of metalloporphyrins. Nano Letters, 14(8), 4751-4756. https://doi.org/10.1021/nl501884g
Fabrication of a well-ordered nanohole array stable at room temperature
Aït-Mansour, K., Buchsbaum, A., Ruffieux, P., Schmid, M., Gröning, P., Varga, P., … Gröning, O. (2008). Fabrication of a well-ordered nanohole array stable at room temperature. Nano Letters, 8(7), 2035-2040. https://doi.org/10.1021/nl8013378
The SERS and TERS effects obtained by gold droplets on top of Si nanowires
Becker, M., Sivakov, V., Andrä, G., Geiger, R., Schreiber, J., Hoffmann, S., … Christiansen, S. H. (2007). The SERS and TERS effects obtained by gold droplets on top of Si nanowires. Nano Letters, 7(1), 75-80. https://doi.org/10.1021/nl0621286
Long exciton dephasing time and coherent phonon coupling in CsPbBr<sub>2</sub>Cl perovskite nanocrystals
Becker, M. A., Scarpelli, L., Nedelcu, G., Rainò, G., Masia, F., Borri, P., … Mahrt, R. F. (2018). Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals. Nano Letters, 18, 7546-7551. https://doi.org/10.1021/acs.nanolett.8b03027
Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters
Bodnarchuk, M. I., Erni, R., Krumeich, F., & Kovalenko, M. V. (2013). Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters. Nano Letters, 13(4), 1699-1705. https://doi.org/10.1021/nl4002475
Material dimensionality effects on electron transfer rates between CsPbBr<sub>3</sub> and CdSe nanoparticles
Brumberg, A., Diroll, B. T., Nedelcu, G., Sykes, M. E., Liu, Y., Harvey, S. M., … Schaller, R. D. (2018). Material dimensionality effects on electron transfer rates between CsPbBr3 and CdSe nanoparticles. Nano Letters, 18(8), 4771-4776. https://doi.org/10.1021/acs.nanolett.8b01238
Periodic giant polarization gradients in doped BiFeO<sub>3</sub> thin films
Campanini, M., Erni, R., Yang, C. H., Ramesh, R., & Rossell, M. D. (2018). Periodic giant polarization gradients in doped BiFeO3 thin films. Nano Letters, 18(2), 717-724. https://doi.org/10.1021/acs.nanolett.7b03817
4D force detection of cell adhesion and contractility
Chala, N., Zhang, X., Zambelli, T., Zhang, Z., Schneider, T., Panozzo, D., … Ferrari, A. (2023). 4D force detection of cell adhesion and contractility. Nano Letters, 23(7), 2467-2475. https://doi.org/10.1021/acs.nanolett.2c03733
Mechanical fingerprint of senescence in endothelial cells
Chala, N., Moimas, S., Giampietro, C., Zhang, X., Zambelli, T., Exarchos, V., … Ferrari, A. (2021). Mechanical fingerprint of senescence in endothelial cells. Nano Letters, 21(12), 4911-4920. https://doi.org/10.1021/acs.nanolett.1c00064
Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-<I>ω</I> method
Choi, T. Y., Poulikakos, D., Tharian, J., & Sennhauser, U. (2006). Measurement of the thermal conductivity of individual carbon nanotubes by the four-point three-ω method. Nano Letters, 6(8), 1589-1593. https://doi.org/10.1021/nl060331v
Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy
Dachraoui, W., Keller, D., Henninen, T. R., Ashton, O. J., & Erni, R. (2021). Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy. Nano Letters, 21(7), 2861-2869. https://doi.org/10.1021/acs.nanolett.0c04965
Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy
Deniz, O., Sánchez-Sánchez, C., Dumslaff, T., Feng, X., Narita, A., Müllen, K., … Ruffieux, P. (2017). Revealing the electronic structure of silicon intercalated armchair graphene nanoribbons by scanning tunneling spectroscopy. Nano Letters, 17(4), 2197-2203. https://doi.org/10.1021/acs.nanolett.6b04727
Resolving atomic connectivity in graphene nanostructure junctions
Dienel, T., Kawai, S., Söde, H., Feng, X., Müllen, K., Ruffieux, P., … Gröning, O. (2015). Resolving atomic connectivity in graphene nanostructure junctions. Nano Letters, 15(8), 5185-5190. https://doi.org/10.1021/acs.nanolett.5b01403
Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities
Dirin, D. N., Vivani, A., Zacharias, M., Sekh, T. V., Cherniukh, I., Yakunin, S., … Bodnarchuk, M. I. (2023). Intrinsic formamidinium tin iodide nanocrystals by suppressing the Sn(IV) impurities. Nano Letters, 23, 1914-1923. https://doi.org/10.1021/acs.nanolett.2c04927
Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes
Dirin, D. N., Protesescu, L., Trummer, D., Kochetygov, I. V., Yakunin, S., Krumeich, F., … Kovalenko, M. V. (2016). Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes. Nano Letters, 16(9), 5866-5874. https://doi.org/10.1021/acs.nanolett.6b02688
Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets
Donati, F., Pivetta, M., Wolf, C., Singha, A., Wäckerlin, C., Baltic, R., … Rusponi, S. (2021). Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets. Nano Letters, 21(19), 8266-8273. https://doi.org/10.1021/acs.nanolett.1c02744
Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon
Dwivedi, N., Neogi, A., Patra, T. K., Dhand, C., Dutta, T., Yeo, R. J., … Bhatia, C. S. (2021). Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon. Nano Letters, 21, 8960-8969. https://doi.org/10.1021/acs.nanolett.1c01997
Pasteur’s Experiment Performed at the Nanoscale: Manual Separation of Chiral Molecules, One by One
Ernst, K. H., Baumann, S., Lutz, C. P., Seibel, J., Zoppi, L., & Heinrich, A. J. (2015). Pasteur’s Experiment Performed at the Nanoscale: Manual Separation of Chiral Molecules, One by One. Nano Letters, 15(8), 5388-5392. https://doi.org/10.1021/acs.nanolett.5b01762
Long-lived exciton coherence in mixed-halide perovskite crystals
Grisard, S., Trifonov, A. V., Solovev, I. A., Yakovlev, D. R., Hordiichuk, O., Kovalenko, M. V., … Akimov, I. A. (2023). Long-lived exciton coherence in mixed-halide perovskite crystals. Nano Letters, 23(16), 7397-7403. https://doi.org/10.1021/acs.nanolett.3c01817
Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk
He, M., Kravchyk, K., Walter, M., & Kovalenko, M. V. (2014). Monodisperse antimony nanocrystals for high-rate Li-ion and Na-ion battery anodes: nano versus bulk. Nano Letters, 14(3), 1255-1262. https://doi.org/10.1021/nl404165c
 

Pages