Active Filters

  • (-) Full Text = Open Access
  • (-) Empa Laboratories ≠ 207 Thin Films and Photovoltaics
  • (-) Funding (EC, SNSF) = Experimental study and atomistic modeling of the deformation induced phase transformations in FeMnSi-based shape memory alloys
Search Results 1 - 5 of 5
  • RSS Feed
Select Page
Grain orientation dependence of the forward and reverse fcc ↔ hcp transformation in FeMnSi-based shape memory alloys studied by <em>in situ</em> neutron diffraction
Arabi-Hashemi, A., Polatidis, E., Smid, M., Panzner, T., & Leinenbach, C. (2020). Grain orientation dependence of the forward and reverse fcc ↔ hcp transformation in FeMnSi-based shape memory alloys studied by in situ neutron diffraction. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 782, 139261 (11 pp.). https://doi.org/10.1016/j.msea.2020.139261
Recovery stress formation in FeMnSi based shape memory alloys: impact of precipitates, texture and grain size
Arabi-Hashemi, A., Lee, W. J., & Leinenbach, C. (2018). Recovery stress formation in FeMnSi based shape memory alloys: impact of precipitates, texture and grain size. Materials and Design, 139, 258-268. https://doi.org/10.1016/j.matdes.2017.11.006
Stress induced martensite variants revealed by in situ high resolution electron backscatter diffraction (HR-EBSD)
Arabi-Hashemi, A., Guo, Y., Michler, J., Casari, D., Leinenbach, C., & Maeder, X. (2018). Stress induced martensite variants revealed by in situ high resolution electron backscatter diffraction (HR-EBSD). Materials and Design, 151, 83-88. https://doi.org/10.1016/j.matdes.2018.04.006
Characterization of the deformation and phase transformation behavior of VC-free and VC-containing FeMnSi-based shape memory alloys by <i>in situ</i> neutron diffraction
Leinenbach, C., Arabi-Hashemi, A., Lee, W. J., Lis, A., Sadegh-Ahmadi, M., Van Petegem, S., … Van Swygenhoven, H. (2017). Characterization of the deformation and phase transformation behavior of VC-free and VC-containing FeMnSi-based shape memory alloys by in situ neutron diffraction. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 703, 314-323. https://doi.org/10.1016/j.msea.2017.07.077
Creep and stress relaxation of a FeMnSi-based shape memory alloy at low temperatures
Leinenbach, C., Lee, W. J., Lis, A., Arabi-Hashemi, A., Cayron, C., & Weber, B. (2016). Creep and stress relaxation of a FeMnSi-based shape memory alloy at low temperatures. Materials Science and Engineering A: Structural Materials: Properties, Microstructure and Processing, 677, 106-115. https://doi.org/10.1016/j.msea.2016.09.042