Active Filters

  • (-) Full Text = Open Access
  • (-) Journal ≠ Target and background signatures V
  • (-) Keywords = energy storage
Search Results 1 - 20 of 21
Select Page
Pyrochlore‐type iron hydroxy fluorides as low‐cost lithium‐ion cathode materials for stationary energy storage
Baumgärtner, J. F., Wörle, M., Guntlin, C. P., Krumeich, F., Siegrist, S., Vogt, V., … Kovalenko, M. V. (2023). Pyrochlore‐type iron hydroxy fluorides as low‐cost lithium‐ion cathode materials for stationary energy storage. Advanced Materials, 35(49), 2304158 (11 pp.). https://doi.org/10.1002/adma.202304158
Methodological studies of the mechanism of anion insertion in nanometer-sized carbon micropores
Welty, C., Taylor, E. E., Posey, S., Vailati, P., Kravchyk, K. V., Kovalenko, M. V., & Stadie, N. P. (2023). Methodological studies of the mechanism of anion insertion in nanometer-sized carbon micropores. ChemSusChem, 16(4), e202201847 (11 pp.). https://doi.org/10.1002/cssc.202201847
Short-lived interfaces in energy materials
Borgschulte, A., Terreni, J., Fumey, B., Sambalova, O., & Billeter, E. (2022). Short-lived interfaces in energy materials. Frontiers in Energy Research, 9, 784082 (13 pp.). https://doi.org/10.3389/fenrg.2021.784082
How much energy storage can we afford? On the need for a sunflower society, aligning demand with renewable supply
Desing, H., & Widmer, R. (2022). How much energy storage can we afford? On the need for a sunflower society, aligning demand with renewable supply. Biophysical Economics and Sustainability, 7, 3 (15 pp.). https://doi.org/10.1007/s41247-022-00097-y
Editorial: Smart Energy Systems
Gambarotta, A., Kyprianidis, K., & Dimopoulos Eggenschwiler, P. (2022). Editorial: Smart Energy Systems. Frontiers in Mechanical Engineering, 8, 854310 (2 pp.). https://doi.org/10.3389/fmech.2022.854310
Perspectives on preparation of two-dimensional MXenes
Chen, N., Yang, W., & Zhang, C. (2021). Perspectives on preparation of two-dimensional MXenes. Science and Technology of Advanced Materials, 22(1), 917-930. https://doi.org/10.1080/14686996.2021.1972755
An overview and prospective on Al and Al-ion battery technologies
Elia, G. A., Kravchyk, K. V., Kovalenko, M. V., Chacón, J., Holland, A., & Wills, R. G. A. (2021). An overview and prospective on Al and Al-ion battery technologies. Journal of Power Sources, 481, 228870 (22 pp.). https://doi.org/10.1016/j.jpowsour.2020.228870
Rational cathode design for high-power sodium-metal chloride batteries
Graeber, G., Landmann, D., Svaluto-Ferro, E., Vagliani, F., Basso, D., Turconi, A., … Battaglia, C. (2021). Rational cathode design for high-power sodium-metal chloride batteries. Advanced Functional Materials, 31(46), 2106367 (13 pp.). https://doi.org/10.1002/adfm.202106367
Building better dual-ion batteries
Kravchyk, K. V., & Kovalenko, M. V. (2020). Building better dual-ion batteries. MRS Energy and Sustainability, 7, e36 (7 pp.). https://doi.org/10.1557/mre.2020.38
Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications
Zhang, C. (J. ), Ma, Y., Zhang, X., Abdolhosseinzadeh, S., Sheng, H., Lan, W., … Nüesch, F. (2020). Two‐dimensional transition metal carbides and nitrides (MXenes): synthesis, properties, and electrochemical energy storage applications. Energy and Environmental Materials, 3, 29-55. https://doi.org/10.1002/eem2.12058
Hole and protonic polarons in perovskites
Braun, A., Chen, Q., & Yelon, A. (2019). Hole and protonic polarons in perovskites. Chimia, 73(11), 936-942. https://doi.org/10.2533/chimia.2019.936
Direct solution‐based synthesis of the Na<sub>4</sub>(B<sub>12</sub>H<sub>12</sub>)(B<sub>10</sub>H<sub>10</sub>) solid electrolyte
Gigante, A., Duchêne, L., Moury, R., Pupier, M., Remhof, A., & Hagemann, H. (2019). Direct solution‐based synthesis of the Na4(B12H12)(B10H10) solid electrolyte. ChemSusChem, 12(21), 4832-4837. https://doi.org/10.1002/cssc.201902152
Rechargeable dual‐ion batteries with graphite as a cathode: key challenges and opportunities
Kravchyk, K. V., & Kovalenko, M. V. (2019). Rechargeable dual‐ion batteries with graphite as a cathode: key challenges and opportunities. Advanced Energy Materials, 9(35), 1901749 (16 pp.). https://doi.org/10.1002/aenm.201901749
Renewable energy storage via CO<sub>2</sub> and H<sub>2</sub> conversion to methane and methanol: assessment for small scale applications
Moioli, E., Mutschler, R., & Züttel, A. (2019). Renewable energy storage via CO2 and H2 conversion to methane and methanol: assessment for small scale applications. Renewable and Sustainable Energy Reviews, 107, 497-506. https://doi.org/10.1016/j.rser.2019.03.022
Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights
Kravchyk, K. V., Piveteau, L., Caputo, R., He, M., Stadie, N. P., Bodnarchuk, M. I., … Kovalenko, M. V. (2018). Colloidal bismuth Nanocrystals as a model anode material for rechargeable Mg-ion batteries: atomistic and mesoscale insights. ACS Nano, 12(8), 8297-8307. https://doi.org/10.1021/acsnano.8b03572
Polypyrenes as high-performance cathode materials for aluminum batteries
Walter, M., Kravchyk, K. V., Böfer, C., Widmer, R., & Kovalenko, M. V. (2018). Polypyrenes as high-performance cathode materials for aluminum batteries. Advanced Materials, 30(15), 1705644 (6 pp.). https://doi.org/10.1002/adma.201705644
Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries
Stadie, N. P., Wang, S., Kravchyk, K. V., & Kovalenko, M. V. (2017). Zeolite-templated carbon as an ordered microporous electrode for aluminum batteries. ACS Nano, 11(2), 1911-1919. https://doi.org/10.1021/acsnano.6b07995
Surface reactions are crucial for energy storage
Callini, E., Kato, S., Mauron, P., & Züttel, A. (2015). Surface reactions are crucial for energy storage. Chimia, 69(5), 269-273. https://doi.org/10.2533/chimia.2015.269
Storage of renewable energy by reduction of CO<SUB>2</SUB> with hydrogen
Züttel, A., Mauron, P., Kato, S., Callini, E., Holzer, M., & Huang, J. (2015). Storage of renewable energy by reduction of CO2 with hydrogen. Chimia, 69(5), 264-268. https://doi.org/10.2533/chimia.2015.264
Storing renewable energy in the hydrogen cycle
Züttel, A., Callini, E., Kato, S., & Atakli, Z. Ö. K. (2015). Storing renewable energy in the hydrogen cycle. Chimia, 69(12), 741-745. https://doi.org/10.2533/chimia.2015.741