| Colloidal technologies for heat energy recovery
Bevione, M., Cecchini, I., Garafalo, E., Suslov, S. A., & Chiolerio, A. (2023). Colloidal technologies for heat energy recovery. In D. Borge-Diez & E. Rosales-Asensio (Eds.), Green energy and technology. Heat energy recovery for industrial processes and wastes (pp. 49-104). https://doi.org/10.1007/978-3-031-24374-5_3 |
| Hydroborate-based solid electrolytes for all-solid-state batteries
Asakura, R., Remhof, A., & Battaglia, C. (2022). Hydroborate-based solid electrolytes for all-solid-state batteries. In R. K. Gupta (Ed.), ACS symposium series: Vol. 1413. Solid state batteries. Volume 1: emerging materials and applications (pp. 353-393). https://doi.org/10.1021/bk-2022-1413.ch014 |
| Scenarios and information for policymakers
Daniel, J. S., Reimann, S., Ashford, P., Fleming, E. L., Hossaini, R., Lickley, M. J., … Walter-Terrinoni, H. (2022). Scenarios and information for policymakers. In GAW report: Vol. 278. Scientific assessment of ozone depletion 2022 (pp. 387-434). World Meteorological Organization (WMO). |
| Evaluation of gas phase: mechanisms and analyses
Gaan, S. (2022). Evaluation of gas phase: mechanisms and analyses. In H. Vahabi, M. Reza Saeb, & G. Malucelli (Eds.), Analysis of flame retardancy in polymer science (pp. 117-159). https://doi.org/10.1016/B978-0-12-824045-8.00004-6 |
| Batterien: so schlecht wie ihr Ruf?
Gauch, M. (2022). Batterien: so schlecht wie ihr Ruf? In Batterien. Schlüssel für die Energiewende. Kompendium zu Forschung, Entwicklung, Potenzial und Systemintegration von Batteriespeichern (pp. 27-33). Forum Energiespeicher Schweiz. |
| Batterie-Recycling: eine Positionsbestimmung
Groux, O., & Gauch, M. (2022). Batterie-Recycling: eine Positionsbestimmung. In Batterien. Schlüssel für die Energiewende. Kompendium zu Forschung, Entwicklung, Potenzial und Systemintegration von Batteriespeichern (pp. 35-39). Forum Energiespeicher Schweiz. |
| Technological advances in postharvest management of food grains
Hashim, N., Onwude, D. I., & Maringgal, B. (2022). Technological advances in postharvest management of food grains. In B. Prakash (Ed.), Research and technological advances in food science (pp. 371-406). https://doi.org/10.1016/C2020-0-01552-5 |
| Rheological evaluation of PE waste-modified bitumen with particular emphasis on rutting resistance
Kakar, M. R., Mikhailenko, P., Piao, Z., & Poulikakos, L. (2022). Rheological evaluation of PE waste-modified bitumen with particular emphasis on rutting resistance. In F. Giustozzi & S. Nizamuddin (Eds.), Woodhead publishing series in civil and structural engineering. Plastic waste for sustainable asphalt roads (pp. 83-97). https://doi.org/10.1016/B978-0-323-85789-5.00005-8 |
| Study of magnetic properties of rare-earth doped cobalt ferrite nanoparticles via green approach
Kambale, R. N., Pansare, A. V., Rode, M. N., Sagar, K., Kalesh, R. R., & Bambole, V. (2022). Study of magnetic properties of rare-earth doped cobalt ferrite nanoparticles via green approach. H. S. Min (Ed.), Recent trends in chemical and material sciences: Vol. 8. (pp. 50-58). https://doi.org/10.9734/bpi/rtcams-v8/3648E |
| Theoretical aspects of sulfide and selenides: structure, point defects, and electronic structure modifications
Kistanov, A. A., Ustiuzhanina, S., & Zhuk, S. (2022). Theoretical aspects of sulfide and selenides: structure, point defects, and electronic structure modifications. In G. K. Dalapati, T. K. S. Wong, S. Kundu, A. K. Chakraborty, & S. Zhuk (Eds.), Sulfide and selenide based materials for emerging applications. Sustainable energy harvesting and storage technology (pp. 57-78). https://doi.org/10.1016/B978-0-323-99860-4.00028-9 |
| Production of microfibrillated cellulose fibers and their application in polymeric composites
Liu, M., Hoffmann, K. G., Geiger, T., & Nyström, G. (2022). Production of microfibrillated cellulose fibers and their application in polymeric composites. In R. Bhat, A. Kumar, T. Nguyen, & S. Sharma (Eds.), Nanotechnology in paper and wood engineering. Fundamentals, challenges and applications (pp. 197-229). https://doi.org/10.1016/B978-0-323-85835-9.00003-9 |
| Advanced characterizations for stabilization/solidification technologies
Ma, B., Yang, J., Fernandez-Martinez, A., Lyubartsev, A., & Charlet, L. (2022). Advanced characterizations for stabilization/solidification technologies. In D. C. W. Tsang & L. Wang (Eds.), Low carbon stabilization and solidification of hazardous wastes (pp. 497-516). https://doi.org/10.1016/B978-0-12-824004-5.00033-5 |
| Clean energy for sustainable development: importance of new materials
Madhu, R., Dalapati, G. K., Wong, T. K. S., Zhuk, S., Kumar Chakraborty, A., & Kundu, S. (2022). Clean energy for sustainable development: importance of new materials. In G. K. Dalpati, T. K. S. Wong, S. Kundu, A. Kumar Chakraborty, & S. Zhuk (Eds.), Sulfide and selenide based materials for emerging applications. Sustainable energy harvesting and storage technology (pp. 1-14). https://doi.org/10.1016/B978-0-323-99860-4.00018-6 |
| Applications of top-down methods to anthropogenic GHG emission estimation
Maksyutov, S., Brunner, D., Turner, A. J., Zavala-Araiza, D., Janardanan, R., Bun, R., … Patra, P. K. (2022). Applications of top-down methods to anthropogenic GHG emission estimation. In B. Poulter, J. G. Canadell, D. J. Hayes, & R. L. Thompson (Eds.), Balancing greenhouse gas budgets. Accounting for natural and anthropogenic flows of CO2 and other trace gases (pp. 455-481). https://doi.org/10.1016/B978-0-12-814952-2.00006-X |
| Thermophysical properties of bulk metallic glasses
Mohr, M., Dong, Y., Hofmann, D. C., Neels, A., Dommann, A., Johnson, W. L., & Fecht, H. J. (2022). Thermophysical properties of bulk metallic glasses. In H. J. Fecht & M. Mohr (Eds.), The minerals, metals & materials series. Metallurgy in space. Recent results from ISS (pp. 425-450). https://doi.org/10.1007/978-3-030-89784-0_19 |
| The importance of CO<sub>2</sub> variations for informed climate action
Ramonet, M., Cristofanelli, P., Delmotte, M., Kubistin, D., & Steinbacher, M. (2022). The importance of CO2 variations for informed climate action. In FLUXES. The European greenhouse gas bulletin: Vol. 1. Are carbon sinks at risk? (pp. 8-14). https://doi.org/10.18160/8NKQ-65S1 |
| Sensors for vital signs. Body temperature sensors
Rossi, R. M., & Annaheim, S. (2022). Sensors for vital signs. Body temperature sensors. In M. Sawan (Ed.), Handbook of biochips. Integrated circuits and systems for biology and medicine (pp. 207-219). https://doi.org/10.1007/978-1-4614-3447-4_43 |
| AE in polymeric composites
Sause, M. G. R., & Brunner, A. J. (2022). AE in polymeric composites. In C. U. Grosse, M. Ohtsu, D. G. Aggelis, & T. Shiotani (Eds.), Springer tracts in civil engineering. Acoustic emission testing. Basics for research - applications in engineering (pp. 621-661). https://doi.org/10.1007/978-3-030-67936-1_21 |
| Peculiarities of using VIP as internal insulation
Stahl, T., Vonbank, R., & Ghazi Wakili, K. (2022). Peculiarities of using VIP as internal insulation. In K. Ghazi Wakili & T. Stahl (Eds.), Energy-efficient retrofit of buildings by interior insulation. Materials, methods, and tools (pp. 19-37). https://doi.org/10.1016/B978-0-12-816513-3.00020-4 |
| Piezoelectric application of metal oxide nanofibers
Tutu, S., & Clemens, F. (2022). Piezoelectric application of metal oxide nanofibers. In V. Esposito & D. Marani (Eds.), Metal oxides. Metal oxide-based nanofibers and their applications (pp. 215-246). https://doi.org/10.1016/B978-0-12-820629-4.00002-3 |