Active Filters

  • (-) Empa Authors = Nicula, Radu C.
Search Results 1 - 20 of 25
Select Page
Thermodynamic, structural and magnetic studies of phase transformations in MnAl nanocomposite alloys
Crisan, A. D., Vasiliu, F., Nicula, R., Bartha, C., Mercioniu, I., & Crisan, O. (2018). Thermodynamic, structural and magnetic studies of phase transformations in MnAl nanocomposite alloys. Materials Characterization, 140, 1-8. https://doi.org/10.1016/j.matchar.2018.03.034
Development and structural characterization of exchange-spring-like nanomagnets in (Fe,Co)-Pt bulk nanocrystalline alloys
Crisan, O., Crisan, A. D., Mercioniu, I., Nicula, R., & Vasiliu, F. (2016). Development and structural characterization of exchange-spring-like nanomagnets in (Fe,Co)-Pt bulk nanocrystalline alloys. Journal of Magnetism and Magnetic Materials, 401, 711-715. https://doi.org/10.1016/j.jmmm.2015.10.114
Effect of Mn addition on the thermal stability and magnetic properties of rapidly-quenched <I>L</I>1<SUB>0</SUB> FePt alloys
Crisan, O., Crisan, A. D., Mercioniu, I., Pantelica, D., Pantelica, D., Vaucher, S., … Vasiliu, F. (2015). Effect of Mn addition on the thermal stability and magnetic properties of rapidly-quenched L10 FePt alloys. Intermetallics, 65, 81-87. https://doi.org/10.1016/j.intermet.2015.06.008
Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe–Pt–Ag–B bulk nanocomposite magnets
Nicula, R., Crisan, O., Crisan, A. D., Mercioniu, I., Stir, M., & Vasiliu, F. (2015). Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe–Pt–Ag–B bulk nanocomposite magnets. Journal of Alloys and Compounds, 622, 865-870. https://doi.org/10.1016/j.jallcom.2014.10.181
Real-time material's response to high power microwave irradiation revealed by in-situ synchrotron radiation methods
Vaucher, S., Cervellino, A., Casati, N., Mokso, R., Ishizaki, K., Stir, M., … Nicula, R. (2015). Real-time material's response to high power microwave irradiation revealed by in-situ synchrotron radiation methods. In 2015 1st URSI atlantic radio science conference (URSI AT-RASC) (p. 7303067 (1 p.). https://doi.org/10.1109/URSI-AT-RASC.2015.7303067
Temperature dependency of nucleation efficiency of carbon nanotubes in PET and PBT
Wurm, A., Herrmann, A., Cornelius, M., Zhuravlev, E., Pospiech, D., Nicula, R., & Schick, C. (2015). Temperature dependency of nucleation efficiency of carbon nanotubes in PET and PBT. Macromolecular Materials and Engineering, 300(6), 637-649. https://doi.org/10.1002/mame.201400405
Dynamic high-temperature monitoring of microwave energy absorption and heating of materials with ultrafast <em>in situ</em> synchrotron X-Ray tomographic microscopy and powder diffraction techniques
Vaucher, S., Mokso, R., Ishizaki, K., Stir, M., & Nicula, R. (2014). Dynamic high-temperature monitoring of microwave energy absorption and heating of materials with ultrafast in situ synchrotron X-Ray tomographic microscopy and powder diffraction techniques. In D. Bernard, J. Y. Buffière, T. Pollock, H. Friis Poulsen, A. Rollett, & M. Uchic (Eds.), Proceedings of the 2nd international congress on 3D materials science (pp. 105-110). https://doi.org/10.1007/978-3-319-48123-4
Crystallization of poly(ε-caprolactone)/MWCNT composites: a combined SAXS/WAXS, electrical and thermal conductivity study
Wurm, A., Lellinger, D., Minakov, A. A., Skipa, T., Pötschke, P., Nicula, R., … Schick, C. (2014). Crystallization of poly(ε-caprolactone)/MWCNT composites: a combined SAXS/WAXS, electrical and thermal conductivity study. Polymer, 55(9), 2220-2232. https://doi.org/10.1016/j.polymer.2014.02.069
Direct formation and thermal stability of exchange-coupled FePt-based nano-composite magnets
Crisan, O., Crisan, A. D., Vasiliu, F., Mercioniu, I., Stir, M., Nicula, R., & Hoffmann, P. (2013). Direct formation and thermal stability of exchange-coupled FePt-based nano-composite magnets. Presented at the Fifth seeheim conference on magnetism. Frankfurt, Germany.
Magnetic microwave heating of magnetite–carbon black mixtures
Ishizaki, K., Stir, M., Gozzo, F., Catala-Civera, J. M., Vaucher, S., & Nicula, R. (2012). Magnetic microwave heating of magnetite–carbon black mixtures. Materials Chemistry and Physics, 134(2-3), 1007-1012. https://doi.org/10.1016/j.matchemphys.2012.03.104
Novel approach for the rapid thermal processing of polymer-metal composites using 2.45 GHz microwave radiation
Nicula, R., Wurm, A., Schick, D., Ishizaki, K., Stir, M., Vaucher, S., … Schick, C. (2012). Novel approach for the rapid thermal processing of polymer-metal composites using 2.45 GHz microwave radiation. Presented at the 40th annual conference of the North American thermal analysis society - NATAS 2012. Orlando, Florida, USA.
Microwave calorimetry using X-rays
Nicula, R., Stir, M., Wurm, A., Catalá-Civera, J. M., Ishizaki, K., Vaucher, S., … Schick, C. (2011). Microwave calorimetry using X-rays. Thermochimica Acta, 526(1-2), 137-142. https://doi.org/10.1016/j.tca.2011.09.007
Rapid synthesis and densification of single-phase Al-Cu-Fe quasicrystals by spark plasma sintering or microwave heating
Nicula, R., Ishizaki, K., Stir, M., Shen, Z., & Vaucher, S. (2011). Rapid synthesis and densification of single-phase Al-Cu-Fe quasicrystals by spark plasma sintering or microwave heating. Philosophical Magazine, 91(19-21), 2450-2457. https://doi.org/10.1080/14786435.2010.511601
Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum
Vaucher, S., Stir, M., Ishizaki, K., Català-Civera, J. M., & Nicula, R. (2011). Reactive synthesis of Ti-Al intermetallics during microwave heating in an E-field maximum. Thermochimica Acta, 522(1-2), 151-154. https://doi.org/10.1016/j.tca.2010.11.026
Microwave sintering explored by X-ray microtomography
Ishizaki, K., Battabyal, M., Yamada Pittini, Y., Nicula, R., & Vaucher, S. (2010). Microwave sintering explored by X-ray microtomography. In R. K. Bordia & E. A. Olevsky (Eds.), Ceramic transactions: Vol. 209. Advances in sintering science and technology (pp. 211-217). https://doi.org/10.1002/9780470599730.ch21
Mechanisms of microwave energy absorption in metallic alloys revealed by &lt;em&gt;in-situ&lt;/em&gt; real-time synchrotron radiation experiments
Nicula, R., Stir, M., Ishizaki, K., & Vaucher, S. (2010). Mechanisms of microwave energy absorption in metallic alloys revealed by in-situ real-time synchrotron radiation experiments. Presented at the 11th Lähnwitzseminar on calorimetry. Rostock, Germany.
Rapid synthesis and densification of single-phase Al-Cu-Fe quasicrystals by spark plasma sintering or microwave heating
Nicula, R., Ishizaki, K., Stir, M., Shen, Z., & Vaucher, S. (2010). Rapid synthesis and densification of single-phase Al-Cu-Fe quasicrystals by spark plasma sintering or microwave heating. Presented at the 11th international conference on quasicrystals (ICQ11). Sapporo, Japan.
Microwave-induced electromigration in multicomponent metallic alloys
Vaucher, S., Bernau, L., Stir, M., Ishizaki, K., Català-Civera, J. M., & Nicula, R. (2010). Microwave-induced electromigration in multicomponent metallic alloys. In IEEE MTT-S international microwave symposium digest. 2010 IEEE MTT-S international microwave symposium (MTT) (pp. 1440-1443). https://doi.org/10.1109/MWSYM.2010.5517705
Microwave energy absorption driven by dynamic structural and magnetization states in Fe<SUB>85</SUB>B<SUB>15</SUB> metallic glass ribbons
Nicula, R., Ishizaki, K., Stir, M., Catala-Civera, J. M., & Vaucher, S. (2009). Microwave energy absorption driven by dynamic structural and magnetization states in Fe85B15 metallic glass ribbons. Applied Physics Letters, 95(17), 174104 (3 pp.). https://doi.org/10.1063/1.3257697
Nanocrystallization of amorphous alloys using microwaves: <I>in situ</I> time-resolved synchrotron radiation studies
Nicula, R., Stir, M., Ishizaki, K., Catalá-Civera, J. M., & Vaucher, S. (2009). Nanocrystallization of amorphous alloys using microwaves: in situ time-resolved synchrotron radiation studies. Journal of physics: conference series: Vol. 144. (p. 012109 (4 pp.). Presented at the 13th international conference on rapidly quenched and metastable materials. https://doi.org/10.1088/1742-6596/144/1/012109