Active Filters

  • (-) Empa Authors = Clemens, Frank J.
  • (-) Keywords ≠ piezoresistive material
  • (-) Empa Laboratories ≠ 308 Concrete and Asphalt
Search Results 1 - 20 of 207

Pages

  • RSS Feed
Select Page
2D printing of piezoresistive auxetic silicone sensor structures
Clemens, F., Melnykowycz, M., Bär, F., Goldenstein, D., & Georgopoulou, A. (2021). 2D printing of piezoresistive auxetic silicone sensor structures. IEEE Robotics and Automation Letters, 6(2), 2541-2546. https://doi.org/10.1109/LRA.2021.3062000
3D printable self-sensing magnetorheological elastomer
Costi, L., Georgopoulou, A., Mondal, S., Iida, F., & Clemens, F. (2023). 3D printable self-sensing magnetorheological elastomer. Macromolecular Materials and Engineering. https://doi.org/10.1002/mame.202300294
3D printable soft sensory fiber networks for robust and complex tactile sensing
Hardman, D., George Thuruthel, T., Georgopoulou, A., Clemens, F., & Iida, F. (2022). 3D printable soft sensory fiber networks for robust and complex tactile sensing. Micromachines, 13(9), 1540 (16 pp.). https://doi.org/10.3390/mi13091540
3D-printing nanocellulose-poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling
Giubilini, A., Siqueira, G., Clemens, F. J., Sciancalepore, C., Messori, M., Nyström, G., & Bondioli, F. (2020). 3D-printing nanocellulose-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling. ACS Sustainable Chemistry and Engineering, 8(27), 10292-10302. https://doi.org/10.1021/acssuschemeng.0c03385
A case study of the effect of grain size on the oxygen permeation flux of BSCF disk-shaped membrane fabricated by thermoplastic processing
Salehi, M., Clemens, F., Pfaff, E. M., Diethelm, S., Leach, C., Graule, T., & Grobéty, B. (2011). A case study of the effect of grain size on the oxygen permeation flux of BSCF disk-shaped membrane fabricated by thermoplastic processing. Journal of Membrane Science, 382(1-2), 186-193. https://doi.org/10.1016/j.memsci.2011.08.007
A facile two-step thermal process for producing a dense, phase-pure, cubic Ta-doped lithium lanthanum zirconium oxide electrolyte for upscaling
Karuppiah, D., Komissarenko, D., Yüzbasi, N. S., Liu, Y., Warriam Sasikumar, P. V., Hadian, A., … Blugan, G. (2023). A facile two-step thermal process for producing a dense, phase-pure, cubic Ta-doped lithium lanthanum zirconium oxide electrolyte for upscaling. Batteries, 9(11), 554 (11 pp.). https://doi.org/10.3390/batteries9110554
A monolithic perovskite structure for use as a magnetic regenerator
Pryds, N., Clemens, F., Menon, M., Nielsen, P. H., Brodersen, K., Bjørk, R., … Smith, A. (2011). A monolithic perovskite structure for use as a magnetic regenerator. Journal of the American Ceramic Society, 94(8), 2549-2555. https://doi.org/10.1111/j.1551-2916.2011.04398.x
A multi-material robotic finger with integrated proprioceptive and tactile capabilities produced with a circular process
Georgopoulou, A., Hamelryckx, S., Junge, K., Eckey, L. M., Rogler, S., Katzschmann, R., … Clemens, F. (2023). A multi-material robotic finger with integrated proprioceptive and tactile capabilities produced with a circular process. In 2023 IEEE 6th international conference on soft robotics (RoboSoft 2023) (p. (6 pp.). https://doi.org/10.1109/RoboSoft55895.2023.10122054
A new measurement method of piezoelectric properties of single ceramic fibres
Steinhausen, R., Kern, S., Pientschke, C., Beige, H., Clemens, F., & Heiber, J. (2010). A new measurement method of piezoelectric properties of single ceramic fibres. Journal of the European Ceramic Society, 30(2), 205-209. https://doi.org/10.1016/j.jeurceramsoc.2009.06.013
A prosthetic hand with integrated sensing elements for selective detection of mechanical and thermal stimuli
Georgopoulou, A., Eckey, L. M., & Clemens, F. (2023). A prosthetic hand with integrated sensing elements for selective detection of mechanical and thermal stimuli. Advanced Intelligent Systems, 5(10), 2300122 (9 pp.). https://doi.org/10.1002/aisy.202300122
A review on self-healing polymers for soft robotics
Terryn, S., Langenbach, J., Roels, E., Brancart, J., Bakkali-Hassani, C., Poutrel, Q. A., … Vanderborght, B. (2021). A review on self-healing polymers for soft robotics. Materials Today, 47, 187-205. https://doi.org/10.1016/j.mattod.2021.01.009
A sensorized soft pneumatic actuator fabricated with extrusion-based additive manufacturing
Georgopoulou, A., Egloff, L., Vanderborght, B., & Clemens, F. (2021). A sensorized soft pneumatic actuator fabricated with extrusion-based additive manufacturing. Actuators, 10(5), 102 (11 pp.). https://doi.org/10.3390/act10050102
A soft pneumatic actuator with integrated deformation sensing elements produced exclusively with extrusion based additive manufacturing
Georgopoulou, A., Egloff, L., Vanderborght, B., & Clemens, F. (2021). A soft pneumatic actuator with integrated deformation sensing elements produced exclusively with extrusion based additive manufacturing. Engineering Proceedings, 6(1), 11 (4 pp.). https://doi.org/10.3390/I3S2021Dresden-10097
Adhesion and stiffness matching in epoxy-vitrimers/strain sensor fiber laminates
Langenbach, J., Bakkali-Hassani, C., Poutrel, Q. A., Georgopoulou, A., Clemens, F., Tournilhac, F., & Norvez, S. (2022). Adhesion and stiffness matching in epoxy-vitrimers/strain sensor fiber laminates. ACS Applied Polymer Materials, 4(2), 1264-1275. https://doi.org/10.1021/acsapm.1c01648
Analysis of styrene-butadiene based thermoplastic magnetorheological elastomers with surface-treated iron particles
Tagliabue, A., Eblagon, F., & Clemens, F. (2021). Analysis of styrene-butadiene based thermoplastic magnetorheological elastomers with surface-treated iron particles. Polymers, 13(10), 1597 (11 pp.). https://doi.org/10.3390/polym13101597
Anodized TiO<SUB>2</SUB> Nanotubes: effect of anodizing time on film length, morphology and photoelectrochemical properties
Regonini, D., & Clemens, F. J. (2015). Anodized TiO2 Nanotubes: effect of anodizing time on film length, morphology and photoelectrochemical properties. Materials Letters, 142, 97-101. https://doi.org/10.1016/j.matlet.2014.11.145
Antistatic fibers for high-visibilityworkwear: challenges of melt-spinning industrial fibers
Hufenus, R., Gooneie, A., Sebastian, T., Simonetti, P., Geiger, A., Parida, D., … Clemens, F. (2020). Antistatic fibers for high-visibilityworkwear: challenges of melt-spinning industrial fibers. Materials, 13(11), 2645 (21 pp.). https://doi.org/10.3390/ma13112645
Assessment of the dispersion quality of refractive index-matched nanodispersions
Fröhlich, K. A., Mitrentsis, E., Clemens, F., Hoffmann, B., Michaud, V., & Graule, T. (2016). Assessment of the dispersion quality of refractive index-matched nanodispersions. Applied Rheology, 26(6), 65050 (10 pp.). https://doi.org/10.3933/ApplRheol-26-65050
Ba<SUB>0.5</SUB>Sr<SUB>0.5</SUB>Co<SUB>0.8</SUB>Fe<SUB>0.2</SUB>O<SUB>3−</SUB><I><SUB>δ</SUB></I> (BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes
Salehi, M., Pfaff, E. M., Morkis Junior, R., Bergmann, C. P., Diethelm, S., Neururer, C., … Clemens, F. J. (2013). Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes. Journal of Membrane Science, 443, 237-245. https://doi.org/10.1016/j.memsci.2013.04.051
BaTiO&lt;sub&gt;3&lt;/sub&gt; nanotubes by co-axial electrospinning: rheological and microstructural investigations
Hedayati, M., Taheri-Nassaj, E., Yourdkhani, A., Borlaf, M., Zhang, J., Calame, M., … Clemens, F. J. (2020). BaTiO3 nanotubes by co-axial electrospinning: rheological and microstructural investigations. Journal of the European Ceramic Society, 40(4), 1269-1279. https://doi.org/10.1016/j.jeurceramsoc.2019.11.078
 

Pages