Active Filters

  • (-) Empa Authors = Clemens, Frank J.
  • (-) Keywords ≠ piezoresistive material
Search Results 1 - 20 of 166

Pages

  • RSS Feed
Select Page
2D printing of piezoresistive auxetic silicone sensor structures
Clemens, F., Melnykowycz, M., Bär, F., Goldenstein, D., & Georgopoulou, A. (2021). 2D printing of piezoresistive auxetic silicone sensor structures. IEEE Robotics and Automation Letters, 6(2), 2541-2546. https://doi.org/10.1109/LRA.2021.3062000
3D-printing nanocellulose-poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling
Giubilini, A., Siqueira, G., Clemens, F. J., Sciancalepore, C., Messori, M., Nyström, G., & Bondioli, F. (2020). 3D-printing nanocellulose-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling. ACS Sustainable Chemistry and Engineering, 8(27), 10292-10302. https://doi.org/10.1021/acssuschemeng.0c03385
A case study of the effect of grain size on the oxygen permeation flux of BSCF disk-shaped membrane fabricated by thermoplastic processing
Salehi, M., Clemens, F., Pfaff, E. M., Diethelm, S., Leach, C., Graule, T., & Grobéty, B. (2011). A case study of the effect of grain size on the oxygen permeation flux of BSCF disk-shaped membrane fabricated by thermoplastic processing. Journal of Membrane Science, 382(1-2), 186-193. https://doi.org/10.1016/j.memsci.2011.08.007
A monolithic perovskite structure for use as a magnetic regenerator
Pryds, N., Clemens, F., Menon, M., Nielsen, P. H., Brodersen, K., Bjørk, R., … Smith, A. (2011). A monolithic perovskite structure for use as a magnetic regenerator. Journal of the American Ceramic Society, 94(8), 2549-2555. https://doi.org/10.1111/j.1551-2916.2011.04398.x
A new measurement method of piezoelectric properties of single ceramic fibres
Steinhausen, R., Kern, S., Pientschke, C., Beige, H., Clemens, F., & Heiber, J. (2010). A new measurement method of piezoelectric properties of single ceramic fibres. Journal of the European Ceramic Society, 30(2), 205-209. https://doi.org/10.1016/j.jeurceramsoc.2009.06.013
A review on self-healing polymers for soft robotics
Terryn, S., Langenbach, J., Roels, E., Brancart, J., Bakkali-Hassani, C., Poutrel, Q. A., … Vanderborght, B. (2021). A review on self-healing polymers for soft robotics. Materials Today, 47, 187-205. https://doi.org/10.1016/j.mattod.2021.01.009
A sensorized soft pneumatic actuator fabricated with extrusion-based additive manufacturing
Georgopoulou, A., Egloff, L., Vanderborght, B., & Clemens, F. (2021). A sensorized soft pneumatic actuator fabricated with extrusion-based additive manufacturing. Actuators, 10(5), 102 (11 pp.). https://doi.org/10.3390/act10050102
Analysis of styrene-butadiene based thermoplastic magnetorheological elastomers with surface-treated iron particles
Tagliabue, A., Eblagon, F., & Clemens, F. (2021). Analysis of styrene-butadiene based thermoplastic magnetorheological elastomers with surface-treated iron particles. Polymers, 13(10), 1597 (11 pp.). https://doi.org/10.3390/polym13101597
Anodized TiO<SUB>2</SUB> Nanotubes: effect of anodizing time on film length, morphology and photoelectrochemical properties
Regonini, D., & Clemens, F. J. (2015). Anodized TiO2 Nanotubes: effect of anodizing time on film length, morphology and photoelectrochemical properties. Materials Letters, 142, 97-101. https://doi.org/10.1016/j.matlet.2014.11.145
Antistatic fibers for high-visibilityworkwear: challenges of melt-spinning industrial fibers
Hufenus, R., Gooneie, A., Sebastian, T., Simonetti, P., Geiger, A., Parida, D., … Clemens, F. (2020). Antistatic fibers for high-visibilityworkwear: challenges of melt-spinning industrial fibers. Materials, 13(11), 2645 (21 pp.). https://doi.org/10.3390/ma13112645
Assessment of the dispersion quality of refractive index-matched nanodispersions
Fröhlich, K. A., Mitrentsis, E., Clemens, F., Hoffmann, B., Michaud, V., & Graule, T. (2016). Assessment of the dispersion quality of refractive index-matched nanodispersions. Applied Rheology, 26(6), 65050 (10 pp.). https://doi.org/10.3933/ApplRheol-26-65050
Ba<SUB>0.5</SUB>Sr<SUB>0.5</SUB>Co<SUB>0.8</SUB>Fe<SUB>0.2</SUB>O<SUB>3−</SUB><I><SUB>δ</SUB></I> (BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes
Salehi, M., Pfaff, E. M., Morkis Junior, R., Bergmann, C. P., Diethelm, S., Neururer, C., … Clemens, F. J. (2013). Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF) feedstock development and optimization for thermoplastic forming of thin planar and tubular oxygen separation membranes. Journal of Membrane Science, 443, 237-245. https://doi.org/10.1016/j.memsci.2013.04.051
BaTiO&lt;sub&gt;3&lt;/sub&gt; nanotubes by co-axial electrospinning: rheological and microstructural investigations
Hedayati, M., Taheri-Nassaj, E., Yourdkhani, A., Borlaf, M., Zhang, J., Calame, M., … Clemens, F. J. (2020). BaTiO3 nanotubes by co-axial electrospinning: rheological and microstructural investigations. Journal of the European Ceramic Society, 40(4), 1269-1279. https://doi.org/10.1016/j.jeurceramsoc.2019.11.078
Barium titanate-based PTCR thermistor fibers: processing and properties
Wegmann, M., Brönnimann, R., Clemens, F., & Graule, T. (2007). Barium titanate-based PTCR thermistor fibers: processing and properties. Sensors and Actuators A: Physical, 135(2), 394-404. https://doi.org/10.1016/j.sna.2006.08.008
Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion
Kastyl, J., Chlup, Z., Clemens, F., & Trunec, M. (2015). Ceramic core–shell composites with modified mechanical properties prepared by thermoplastic co-extrusion. Journal of the European Ceramic Society, 35(10), 2873-2881. https://doi.org/10.1016/j.jeurceramsoc.2015.04.012
Characterization and estimation of dielectric constant of electrospun BaTiO&lt;sub&gt;3&lt;/sub&gt; nanofibers at different calcination temperatures using theoretical models
Hedayati, M., Taheri-Nassaj, E., Yourdkhani, A., Borlaf, M., Rasekh, S., Amirkhizi, P., … Clemens, F. J. (2021). Characterization and estimation of dielectric constant of electrospun BaTiO3 nanofibers at different calcination temperatures using theoretical models. Journal of the European Ceramic Society, 41(2), 1299-1309. https://doi.org/10.1016/j.jeurceramsoc.2020.09.072
Comparison methods for microstructure analysis on highly porous extrudates based on diatomite filter aids
van Garderen, N., Graule, T., Aneziris, C. G., & Clemens, F. J. (2013). Comparison methods for microstructure analysis on highly porous extrudates based on diatomite filter aids. Microporous and Mesoporous Materials, 171, 215-222. https://doi.org/10.1016/j.micromeso.2012.12.022
Comparison of photoelectrochemical properties of TiO<sub>2</sub> Nanotubes and sol-gel
Regonini, D., Chen, G., Leach, C., & Clemens, F. J. (2016). Comparison of photoelectrochemical properties of TiO2 Nanotubes and sol-gel. Electrochimica Acta, 213, 31-36. https://doi.org/10.1016/j.electacta.2016.07.097
Comparison of piezoresistive monofilament polymer sensors
Melnykowycz, M., Koll, B., Scharf, D., & Clemens, F. (2014). Comparison of piezoresistive monofilament polymer sensors. Sensors, 14(1), 1278-1294. https://doi.org/10.3390/s140101278
Computing fibers for smart textiles
Clemens, F., & Mathewson, A. (2002). Computing fibers for smart textiles (p. 11 pp.). Presented at the 2002 conference of the int. centre of excellence for wearable electronics and smart fashion products (ICEWES). .
 

Pages