Active Filters

  • (-) Journal = of Microscopy
Search Results 1 - 18 of 18
  • RSS Feed
Select Page
Preparation of TEM samples of metal-oxide interface by the focused ion beam technique
Abolhassani, S., & Gasser, P. (2006). Preparation of TEM samples of metal-oxide interface by the focused ion beam technique. Journal of Microscopy, 223(1), 73-82. https://doi.org/10.1111/j.1365-2818.2006.01599.x
EBSD: a powerful microstructure analysis technique in the field of solidification
Boehm-Courjault, E., Gonzales, F., Jacot, A., Kohler, F., Mariaux, A., Niederberger, C., … Rappaz, M. (2009). EBSD: a powerful microstructure analysis technique in the field of solidification. Journal of Microscopy, 233(1), 160-169. https://doi.org/10.1111/j.1365-2818.2008.03107.x
Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components
Cavalli, M. C., Griffa, M., Bressi, S., Partl, M. N., Tebaldi, G., & Poulikakos, L. D. (2016). Multiscale imaging and characterization of the effect of mixing temperature on asphalt concrete containing recycled components. Journal of Microscopy, 264(1), 22-33. https://doi.org/10.1111/jmi.12412
Quantification of fly ash in hydrated, blended Portland cement pastes by backscattered electron imaging
Deschner, F., Münch, B., Winnefeld, F., & Lothenbach, B. (2013). Quantification of fly ash in hydrated, blended Portland cement pastes by backscattered electron imaging. Journal of Microscopy, 251(2), 188-204. https://doi.org/10.1111/jmi.12061
Cryo-FIB-nanotomography for quantitative analysis of particle structures in cement suspensions
Holzer, L., Gasser, P., Kaech, A., Wegmann, M., Zingg, A., Wepf, R., & Münch, B. (2007). Cryo-FIB-nanotomography for quantitative analysis of particle structures in cement suspensions. Journal of Microscopy, 227(3), 216-228. https://doi.org/10.1111/j.1365-2818.2007.01804.x
Three-dimensional analysis of porous BaTiO<sub>3</sub> ceramics using FIB nanotomography
Holzer, L., Indutnyi, F., Gasser, P., Münch, B., & Wegmann, M. (2004). Three-dimensional analysis of porous BaTiO3 ceramics using FIB nanotomography. Journal of Microscopy, 216(1), 84-95. https://doi.org/10.1111/j.0022-2720.2004.01397.x
Quantitative microstructure analysis of polymer-modified mortars
Jenni, A., Herwegh, M., Zurbriggen, R., Aberle, T., & Holzer, L. (2003). Quantitative microstructure analysis of polymer-modified mortars. Journal of Microscopy, 212(2), 186-196. https://doi.org/10.1046/j.1365-2818.2003.01230.x
Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles
Kaegi, R., & Gasser, P. (2006). Application of the focused ion beam technique in aerosol science: detailed investigation of selected, airborne particles. Journal of Microscopy, 224(2), 140-145. https://doi.org/10.1111/j.1365-2818.2006.01669.x
Carbonated wollastonite - an effective supplementary cementitious material?
Leemann, A., Winnefeld, F., Münch, B., & Läng, F. (2021). Carbonated wollastonite - an effective supplementary cementitious material? Journal of Microscopy. https://doi.org/10.1111/jmi.13067
Transmitted light microscopy of a fibre reinforced metal
Moser, B., Rossoll, A., Weber, L., Beffort, O., & Mortensen, A. (2003). Transmitted light microscopy of a fibre reinforced metal. Journal of Microscopy, 209(1), 8-12. https://doi.org/10.1046/j.1365-2818.2003.01097.x
Segmentation of elemental EDS maps by means of multiple clustering combined with phase identification
Münch, B., Martin, L. H. J., & Leemann, A. (2015). Segmentation of elemental EDS maps by means of multiple clustering combined with phase identification. Journal of Microscopy, 260(3), 411-426. https://doi.org/10.1111/jmi.12309
Investigation of porous asphalt microstructure using optical and electron microscopy
Poulikakos, L. D., & Partl, M. N. (2010). Investigation of porous asphalt microstructure using optical and electron microscopy. Journal of Microscopy, 240(2), 145-154. https://doi.org/10.1111/j.1365-2818.2010.03388.x
Bitumen surface microstructure evolution in subzero environments
Tarpoudi Baheri, F., Schutzius, T. M., Poulikakos, D., & Poulikakos, L. D. (2020). Bitumen surface microstructure evolution in subzero environments. Journal of Microscopy, 279(1), 3-15. https://doi.org/10.1111/jmi.12890
Focussed ion beam nanotomography reveals the 3D morphology of different solid phases in hardened cement pastes
Trtik, P., Münch, B., Gasser, P., Leemann, A., Loser, R., Wepf, R., & Lura, P. (2011). Focussed ion beam nanotomography reveals the 3D morphology of different solid phases in hardened cement pastes. Journal of Microscopy, 241(3), 234-242. https://doi.org/10.1111/j.1365-2818.2010.03433.x
Limitation in obtainable surface roughness of hardened cement paste: 'virtual' topographic experiment based on focussed ion beam nanotomography datasets
Trtik, P., Dual, J., Muench, B., & Holzer, L. (2008). Limitation in obtainable surface roughness of hardened cement paste: 'virtual' topographic experiment based on focussed ion beam nanotomography datasets. Journal of Microscopy, 232(2), 200-206. https://doi.org/10.1111/j.1365-2818.2008.02090.x
Characterizing microcrack orientation distribution functions in osteonal bone samples
Wolfram, U., Schwiedrzik, J. J., Mirzaali, M. J., Bürki, A., Varga, P., Olivier, C., … Zysset, P. K. (2016). Characterizing microcrack orientation distribution functions in osteonal bone samples. Journal of Microscopy, 264(3), 268-281. https://doi.org/10.1111/jmi.12440
Visualization of water drying in porous materials by X-ray phase contrast imaging
Yang, F., Griffa, M., Bonnin, A., Mokso, R., Di Bella, C., Münch, B., … Lura, P. (2016). Visualization of water drying in porous materials by X-ray phase contrast imaging. Journal of Microscopy, 261(1), 88-104. https://doi.org/10.1111/jmi.12319
Optimizing and applying high‐resolution, in‐line laboratory phase‐contrast X‐ray imaging for low‐density material samples
Zboray, R. (2021). Optimizing and applying high‐resolution, in‐line laboratory phase‐contrast X‐ray imaging for low‐density material samples. Journal of Microscopy, 282(2), 123-135. https://doi.org/10.1111/jmi.12986