Active Filters

  • (-) Journal = Nano Letters
  • (-) Empa Laboratories ≠ 207 Thin Films and Photovoltaics
Search Results 1 - 20 of 48
Select Page
4D force detection of cell adhesion and contractility
Chala, N., Zhang, X., Zambelli, T., Zhang, Z., Schneider, T., Panozzo, D., … Ferrari, A. (2023). 4D force detection of cell adhesion and contractility. Nano Letters, 23(7), 2467-2475. https://doi.org/10.1021/acs.nanolett.2c03733
Exchange interactions and intermolecular hybridization in a spin-<sup>1</sup>/<sub>2</sub> nanographene dimer
Turco, E., Krane, N., Bernhardt, A., Jacob, D., Gandus, G., Passerone, D., … Ruffieux, P. (2023). Exchange interactions and intermolecular hybridization in a spin-1/2 nanographene dimer. Nano Letters, 23(20), 9353-9359. https://doi.org/10.1021/acs.nanolett.3c02633
Determining the number of graphene nanoribbons in dual-gate field-effect transistors
Zhang, J., Borin Barin, G., Furrer, R., Du, C. Z., Wang, X. Y., Müllen, K., … Perrin, M. L. (2023). Determining the number of graphene nanoribbons in dual-gate field-effect transistors. Nano Letters, 23(18), 8474-8480. https://doi.org/10.1021/acs.nanolett.3c01931
Mechanical fingerprint of senescence in endothelial cells
Chala, N., Moimas, S., Giampietro, C., Zhang, X., Zambelli, T., Exarchos, V., … Ferrari, A. (2021). Mechanical fingerprint of senescence in endothelial cells. Nano Letters, 21(12), 4911-4920. https://doi.org/10.1021/acs.nanolett.1c00064
Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy
Dachraoui, W., Keller, D., Henninen, T. R., Ashton, O. J., & Erni, R. (2021). Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy. Nano Letters, 21(7), 2861-2869. https://doi.org/10.1021/acs.nanolett.0c04965
Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets
Donati, F., Pivetta, M., Wolf, C., Singha, A., Wäckerlin, C., Baltic, R., … Rusponi, S. (2021). Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets. Nano Letters, 21(19), 8266-8273. https://doi.org/10.1021/acs.nanolett.1c02744
Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon
Dwivedi, N., Neogi, A., Patra, T. K., Dhand, C., Dutta, T., Yeo, R. J., … Bhatia, C. S. (2021). Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon. Nano Letters, 21, 8960-8969. https://doi.org/10.1021/acs.nanolett.1c01997
Inversion-symmetry engineering in layered oxide thin films
Nordlander, J., Rossell, M. D., Campanini, M., Fiebig, M., & Trassin, M. (2021). Inversion-symmetry engineering in layered oxide thin films. Nano Letters, 21(7), 2780-2785. https://doi.org/10.1021/acs.nanolett.0c04819
Atomistic positioning of defects in helium ion treated single-layer MoS&lt;sub&gt;2&lt;/sub&gt;
Mitterreiter, E., Schuler, B., Cochrane, K. A., Wurstbauer, U., Weber-Bargioni, A., Kastl, C., & Holleitner, A. W. (2020). Atomistic positioning of defects in helium ion treated single-layer MoS2. Nano Letters, 20(6), 4437-4444. https://doi.org/10.1021/acs.nanolett.0c01222
Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions
Sun, Q., Yao, X., Gröning, O., Eimre, K., Pignedoli, C. A., Müllen, K., … Ruffieux, P. (2020). Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions. Nano Letters, 20(9), 6429-6436. https://doi.org/10.1021/acs.nanolett.0c02077
Breaking the quantum PIN code of atomic synapses
Török, T. N., Csontos, M., Makk, P., & Halbritter, A. (2020). Breaking the quantum PIN code of atomic synapses. Nano Letters, 20, 1192-1200. https://doi.org/10.1021/acs.nanolett.9b04617
Optical imaging and spectroscopy of atomically precise armchair graphene nanoribbons
Zhao, S., Borin Barin, G., Cao, T., Overbeck, J., Darawish, R., Lyu, T., … Wang, F. (2020). Optical imaging and spectroscopy of atomically precise armchair graphene nanoribbons. Nano Letters, 20(1), 1124-1130. https://doi.org/10.1021/acs.nanolett.9b04497
Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging
Keevend, K., Puust, L., Kurvits, K., Gerken, L. R. H., Starsich, F. H. L., Li, J. H., … Herrmann, I. K. (2019). Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging. Nano Letters, 19(9), 6013-6018. https://doi.org/10.1021/acs.nanolett.9b01819
Cellogram: on-the-fly traction force microscopy
Lendenmann, T., Schneider, T., Dumas, J., Tarini, M., Giampietro, C., Bajpai, A., … Panozzo, D. (2019). Cellogram: on-the-fly traction force microscopy. Nano Letters, 19(10), 6742-6750. https://doi.org/10.1021/acs.nanolett.9b01505
Observation of nanoscale skyrmions in SrIrO&lt;sub&gt;3&lt;/sub&gt;/SrRuO&lt;sub&gt;3&lt;/sub&gt; bilayers
Meng, K. Y., Ahmed, A. S., Baćani, M., Mandru, A. O., Zhao, X., Bagués, N., … Yang, F. (2019). Observation of nanoscale skyrmions in SrIrO3/SrRuO3 bilayers. Nano Letters, 19(5), 3169-3175. https://doi.org/10.1021/acs.nanolett.9b00596
Dynamic plasticity and failure of microscale glass: rate-dependent ductile–brittle–ductile transition
Ramachandramoorthy, R., Schwiedrzik, J., Petho, L., Guerra-Nuñez, C., Frey, D., Breguet, J. M., & Michler, J. (2019). Dynamic plasticity and failure of microscale glass: rate-dependent ductile–brittle–ductile transition. Nano Letters, 19(4), 2350-2359. https://doi.org/10.1021/acs.nanolett.8b05024
In situ strain tuning in hBN-encapsulated graphene electronic devices
Wang, L., Zihlmann, S., Baumgartner, A., Overbeck, J., Watanabe, K., Taniguchi, T., … Schönenberger, C. (2019). In situ strain tuning in hBN-encapsulated graphene electronic devices. Nano Letters, 19(6), 4097-4102. https://doi.org/10.1021/acs.nanolett.9b01491
Periodic giant polarization gradients in doped BiFeO<sub>3</sub> thin films
Campanini, M., Erni, R., Yang, C. H., Ramesh, R., & Rossell, M. D. (2018). Periodic giant polarization gradients in doped BiFeO3 thin films. Nano Letters, 18(2), 717-724. https://doi.org/10.1021/acs.nanolett.7b03817
Nanoladder cantilevers made from diamond and silicon
Héritier, M., Eichler, A., Pan, Y., Grob, U., Shorubalko, I., Krass, M. D., … Degen, C. L. (2018). Nanoladder cantilevers made from diamond and silicon. Nano Letters, 18(3), 1814-1818. https://doi.org/10.1021/acs.nanolett.7b05035
Modification of the potential landscape of molecular rotors on Au(111) by the presence of an STM tip
Lu, H. L., Cao, Y., Qi, J., Bakker, A., Strassert, C. A., Lin, X., … Gao, H. J. (2018). Modification of the potential landscape of molecular rotors on Au(111) by the presence of an STM tip. Nano Letters, 18(8), 4704-4709. https://doi.org/10.1021/acs.nanolett.8b01019