Active Filters

  • (-) Journal = Nano Letters
Search Results 1 - 20 of 63

Pages

  • RSS Feed
Select Page
Mechanical fingerprint of senescence in endothelial cells
Chala, N., Moimas, S., Giampietro, C., Zhang, X., Zambelli, T., Exarchos, V., … Ferrari, A. (2021). Mechanical fingerprint of senescence in endothelial cells. Nano Letters, 21(12), 4911-4920. https://doi.org/10.1021/acs.nanolett.1c00064
Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy
Dachraoui, W., Keller, D., Henninen, T. R., Ashton, O. J., & Erni, R. (2021). Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy. Nano Letters, 21(7), 2861-2869. https://doi.org/10.1021/acs.nanolett.0c04965
Inversion-symmetry engineering in layered oxide thin films
Nordlander, J., Rossell, M. D., Campanini, M., Fiebig, M., & Trassin, M. (2021). Inversion-symmetry engineering in layered oxide thin films. Nano Letters, 21(7), 2780-2785. https://doi.org/10.1021/acs.nanolett.0c04819
Hot carrier dynamics in perovskite nanocrystal solids: role of the cold carriers, nanoconfinement, and the surface
Hopper, T. R., Gorodetsky, A., Jeong, A., Krieg, F., Bodnarchuk, M. I., Maimaris, M., … Bakulin, A. A. (2020). Hot carrier dynamics in perovskite nanocrystal solids: role of the cold carriers, nanoconfinement, and the surface. Nano Letters, 20(4), 2271-2278. https://doi.org/10.1021/acs.nanolett.9b04491
Atomistic positioning of defects in helium ion treated single-layer MoS<sub>2</sub>
Mitterreiter, E., Schuler, B., Cochrane, K. A., Wurstbauer, U., Weber-Bargioni, A., Kastl, C., & Holleitner, A. W. (2020). Atomistic positioning of defects in helium ion treated single-layer MoS2. Nano Letters, 20(6), 4437-4444. https://doi.org/10.1021/acs.nanolett.0c01222
Colloidal-ALD-grown core/shell CdSe/CdS nanoplatelets as seen by DNP enhanced PASS-PIETA NMR spectroscopy
Piveteau, L., Dirin, D. N., Gordon, C. P., Walder, B. J., Ong, T. C., Emsley, L., … Kovalenko, M. V. (2020). Colloidal-ALD-grown core/shell CdSe/CdS nanoplatelets as seen by DNP enhanced PASS-PIETA NMR spectroscopy. Nano Letters, 20(5), 3003-3018. https://doi.org/10.1021/acs.nanolett.9b04870
Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions
Sun, Q., Yao, X., Gröning, O., Eimre, K., Pignedoli, C. A., Müllen, K., … Ruffieux, P. (2020). Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions. Nano Letters, 20(9), 6429-6436. https://doi.org/10.1021/acs.nanolett.0c02077
Breaking the quantum PIN code of atomic synapses
Török, T. N., Csontos, M., Makk, P., & Halbritter, A. (2020). Breaking the quantum PIN code of atomic synapses. Nano Letters, 20, 1192-1200. https://doi.org/10.1021/acs.nanolett.9b04617
Optical imaging and spectroscopy of atomically precise armchair graphene nanoribbons
Zhao, S., Borin Barin, G., Cao, T., Overbeck, J., Darawish, R., Lyu, T., … Wang, F. (2020). Optical imaging and spectroscopy of atomically precise armchair graphene nanoribbons. Nano Letters, 20(1), 1124-1130. https://doi.org/10.1021/acs.nanolett.9b04497
Energy transfer from perovskite nanocrystals to dye molecules does not occur by FRET
Hofmann, F. J., Bodnarchuk, M. I., Dirin, D. N., Vogelsang, J., Kovalenko, M. V., & Lupton, J. M. (2019). Energy transfer from perovskite nanocrystals to dye molecules does not occur by FRET. Nano Letters, 19(12), 8896-8902. https://doi.org/10.1021/acs.nanolett.9b03779
Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging
Keevend, K., Puust, L., Kurvits, K., Gerken, L. R. H., Starsich, F. H. L., Li, J. H., … Herrmann, I. K. (2019). Ultrabright and stable luminescent labels for correlative cathodoluminescence electron microscopy (CCLEM) bioimaging. Nano Letters, 19(9), 6013-6018. https://doi.org/10.1021/acs.nanolett.9b01819
Cellogram: on-the-fly traction force microscopy
Lendenmann, T., Schneider, T., Dumas, J., Tarini, M., Giampietro, C., Bajpai, A., … Panozzo, D. (2019). Cellogram: on-the-fly traction force microscopy. Nano Letters, 19(10), 6742-6750. https://doi.org/10.1021/acs.nanolett.9b01505
Observation of nanoscale skyrmions in SrIrO<sub>3</sub>/SrRuO<sub>3</sub> bilayers
Meng, K. Y., Ahmed, A. S., Baćani, M., Mandru, A. O., Zhao, X., Bagués, N., … Yang, F. (2019). Observation of nanoscale skyrmions in SrIrO3/SrRuO3 bilayers. Nano Letters, 19(5), 3169-3175. https://doi.org/10.1021/acs.nanolett.9b00596
Underestimated effect of a polymer matrix on the light emission of single CsPbBr<sub>3</sub> nanocrystals
Rainò, G., Landuyt, A., Krieg, F., Bernasconi, C., Ochsenbein, S. T., Dirin, D. N., … Kovalenko, M. V. (2019). Underestimated effect of a polymer matrix on the light emission of single CsPbBr3 nanocrystals. Nano Letters, 19(6), 3648-3653. https://doi.org/10.1021/acs.nanolett.9b00689
Dynamic plasticity and failure of microscale glass: rate-dependent ductile–brittle–ductile transition
Ramachandramoorthy, R., Schwiedrzik, J., Petho, L., Guerra-Nuñez, C., Frey, D., Breguet, J. M., & Michler, J. (2019). Dynamic plasticity and failure of microscale glass: rate-dependent ductile–brittle–ductile transition. Nano Letters, 19(4), 2350-2359. https://doi.org/10.1021/acs.nanolett.8b05024
In situ strain tuning in hBN-encapsulated graphene electronic devices
Wang, L., Zihlmann, S., Baumgartner, A., Overbeck, J., Watanabe, K., Taniguchi, T., … Schönenberger, C. (2019). In situ strain tuning in hBN-encapsulated graphene electronic devices. Nano Letters, 19(6), 4097-4102. https://doi.org/10.1021/acs.nanolett.9b01491
Long exciton dephasing time and coherent phonon coupling in CsPbBr<sub>2</sub>Cl perovskite nanocrystals
Becker, M. A., Scarpelli, L., Nedelcu, G., Rainò, G., Masia, F., Borri, P., … Mahrt, R. F. (2018). Long exciton dephasing time and coherent phonon coupling in CsPbBr2Cl perovskite nanocrystals. Nano Letters, 18, 7546-7551. https://doi.org/10.1021/acs.nanolett.8b03027
Material dimensionality effects on electron transfer rates between CsPbBr<sub>3</sub> and CdSe nanoparticles
Brumberg, A., Diroll, B. T., Nedelcu, G., Sykes, M. E., Liu, Y., Harvey, S. M., … Schaller, R. D. (2018). Material dimensionality effects on electron transfer rates between CsPbBr3 and CdSe nanoparticles. Nano Letters, 18(8), 4771-4776. https://doi.org/10.1021/acs.nanolett.8b01238
Periodic giant polarization gradients in doped BiFeO<sub>3</sub> thin films
Campanini, M., Erni, R., Yang, C. H., Ramesh, R., & Rossell, M. D. (2018). Periodic giant polarization gradients in doped BiFeO3 thin films. Nano Letters, 18(2), 717-724. https://doi.org/10.1021/acs.nanolett.7b03817
Nanoladder cantilevers made from diamond and silicon
Héritier, M., Eichler, A., Pan, Y., Grob, U., Shorubalko, I., Krass, M. D., … Degen, C. L. (2018). Nanoladder cantilevers made from diamond and silicon. Nano Letters, 18(3), 1814-1818. https://doi.org/10.1021/acs.nanolett.7b05035
 

Pages