Active Filters

  • (-) Journal = Nano Letters
Search Results 1 - 20 of 79

Pages

  • RSS Feed
Select Page
4D force detection of cell adhesion and contractility
Chala, N., Zhang, X., Zambelli, T., Zhang, Z., Schneider, T., Panozzo, D., … Ferrari, A. (2023). 4D force detection of cell adhesion and contractility. Nano Letters, 23(7), 2467-2475. https://doi.org/10.1021/acs.nanolett.2c03733
A dielectrophoretic method for high yield deposition of suspended, individual carbon nanotubes with four-point electrode contact
Schwamb, T., Choi, T. Y., Schirmer, N., Bieri, N. R., Burg, B., Tharian, J., … Poulikakos, D. (2007). A dielectrophoretic method for high yield deposition of suspended, individual carbon nanotubes with four-point electrode contact. Nano Letters, 7(12), 3633-3638. https://doi.org/10.1021/nl071853t
Achieving high-current carbon nanotube emitters
Minoux, E., Groening, O., Teo, K. B. K., Dalal, S. H., Gangloff, L., Schnell, J. P., … Milne, W. I. (2005). Achieving high-current carbon nanotube emitters. Nano Letters, 5(11), 2135-2138. https://doi.org/10.1021/nl051397d
Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency
Reinhard, P., Bissig, B., Pianezzi, F., Hagendorfer, H., Sozzi, G., Menozzi, R., … Tiwari, A. N. (2015). Alkali-templated surface nanopatterning of chalcogenide thin films: a novel approach toward solar cells with enhanced efficiency. Nano Letters, 15(5), 3334-3340. https://doi.org/10.1021/acs.nanolett.5b00584
Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon
Dwivedi, N., Neogi, A., Patra, T. K., Dhand, C., Dutta, T., Yeo, R. J., … Bhatia, C. S. (2021). Angstrom-scale transparent overcoats: interfacial nitrogen-driven atomic intermingling promotes lubricity and surface protection of ultrathin carbon. Nano Letters, 21, 8960-8969. https://doi.org/10.1021/acs.nanolett.1c01997
Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales
Wheeler, J. M., Raghavan, R., Wehrs, J., Zhang, Y., Erni, R., & Michler, J. (2016). Approaching the limits of strength: measuring the uniaxial compressive strength of diamond at small scales. Nano Letters, 16(1), 812-816. https://doi.org/10.1021/acs.nanolett.5b04989
Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy
Dachraoui, W., Keller, D., Henninen, T. R., Ashton, O. J., & Erni, R. (2021). Atomic mechanisms of nanocrystallization via cluster-clouds in solution studied by liquid-phase scanning transmission electron microscopy. Nano Letters, 21(7), 2861-2869. https://doi.org/10.1021/acs.nanolett.0c04965
Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene
Hong, H. K., Jo, J., Hwang, D., Lee, J., Kim, N. Y., Son, S., … Lee, Z. (2017). Atomic scale study on growth and heteroepitaxy of ZnO monolayer on graphene. Nano Letters, 17(1), 120-127. https://doi.org/10.1021/acs.nanolett.6b03621
Atomistic positioning of defects in helium ion treated single-layer MoS<sub>2</sub>
Mitterreiter, E., Schuler, B., Cochrane, K. A., Wurstbauer, U., Weber-Bargioni, A., Kastl, C., & Holleitner, A. W. (2020). Atomistic positioning of defects in helium ion treated single-layer MoS2. Nano Letters, 20(6), 4437-4444. https://doi.org/10.1021/acs.nanolett.0c01222
Axial p-n junctions realized in silicon nanowires by ion implantation
Hoffmann, S., Bauer, J., Ronning, C., Stelzner, T., Michler, J., Ballif, C., … Christiansen, S. H. (2009). Axial p-n junctions realized in silicon nanowires by ion implantation. Nano Letters, 9(4), 1341-1344. https://doi.org/10.1021/nl802977m
Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters
Bodnarchuk, M. I., Erni, R., Krumeich, F., & Kovalenko, M. V. (2013). Binary superlattices from colloidal nanocrystals and giant polyoxometalate clusters. Nano Letters, 13(4), 1699-1705. https://doi.org/10.1021/nl4002475
Breaking the quantum PIN code of atomic synapses
Török, T. N., Csontos, M., Makk, P., & Halbritter, A. (2020). Breaking the quantum PIN code of atomic synapses. Nano Letters, 20, 1192-1200. https://doi.org/10.1021/acs.nanolett.9b04617
Cellogram: on-the-fly traction force microscopy
Lendenmann, T., Schneider, T., Dumas, J., Tarini, M., Giampietro, C., Bajpai, A., … Panozzo, D. (2019). Cellogram: on-the-fly traction force microscopy. Nano Letters, 19(10), 6742-6750. https://doi.org/10.1021/acs.nanolett.9b01505
Coherent spin dynamics of electrons in two-dimensional (PEA)<sub>2</sub>PbI<sub>4 p</sub>erovskites
Kirstein, E., Zhukov, E. A., Yakovlev, D. R., Kopteva, N. E., Harkort, C., Kudlacik, D., … Bayer, M. (2023). Coherent spin dynamics of electrons in two-dimensional (PEA)2PbI4 perovskites. Nano Letters, 23(1), 205-212. https://doi.org/10.1021/acs.nanolett.2c03975
Colloidal-ALD-grown core/shell CdSe/CdS nanoplatelets as seen by DNP enhanced PASS-PIETA NMR spectroscopy
Piveteau, L., Dirin, D. N., Gordon, C. P., Walder, B. J., Ong, T. C., Emsley, L., … Kovalenko, M. V. (2020). Colloidal-ALD-grown core/shell CdSe/CdS nanoplatelets as seen by DNP enhanced PASS-PIETA NMR spectroscopy. Nano Letters, 20(5), 3003-3018. https://doi.org/10.1021/acs.nanolett.9b04870
Compression of nanowires using a flat indenter: diametrical elasticity measurement
Wang, Z., Mook, W. M., Niederberger, C., Ghisleni, R., Philippe, L., & Michler, J. (2012). Compression of nanowires using a flat indenter: diametrical elasticity measurement. Nano Letters, 12(5), 2289-2293. https://doi.org/10.1021/nl300103z
Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets
Donati, F., Pivetta, M., Wolf, C., Singha, A., Wäckerlin, C., Baltic, R., … Rusponi, S. (2021). Correlation between electronic configuration and magnetic stability in dysprosium single atom magnets. Nano Letters, 21(19), 8266-8273. https://doi.org/10.1021/acs.nanolett.1c02744
Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions
Sun, Q., Yao, X., Gröning, O., Eimre, K., Pignedoli, C. A., Müllen, K., … Ruffieux, P. (2020). Coupled spin states in armchair graphene nanoribbons with asymmetric zigzag edge extensions. Nano Letters, 20(9), 6429-6436. https://doi.org/10.1021/acs.nanolett.0c02077
Crystallographically textured nanomaterials produced from the liquid phase sintering of Bi<sub><em>x</em></sub>Sb<sub>2–<em>x</em></sub>Te<sub>3</sub> nanocrystal building blocks
Liu, Y., Zhang, Y., Ortega, S., Ibáñez, M., Lim, K. H., Grau-Carbonell, A., … Cabot, A. (2018). Crystallographically textured nanomaterials produced from the liquid phase sintering of BixSb2–xTe3 nanocrystal building blocks. Nano Letters, 18(4), 2557-2563. https://doi.org/10.1021/acs.nanolett.8b00263
Determining the number of graphene nanoribbons in dual-gate field-effect transistors
Zhang, J., Borin Barin, G., Furrer, R., Du, C. Z., Wang, X. Y., Müllen, K., … Perrin, M. L. (2023). Determining the number of graphene nanoribbons in dual-gate field-effect transistors. Nano Letters, 23(18), 8474-8480. https://doi.org/10.1021/acs.nanolett.3c01931
 

Pages