| All platinum group metal-free and durable catalysts for direct borohydride fuel cells
Ko, Y., Park, J., Zhang, X., Kang, L., Pham, T. H. M., Boureau, V., … Züttel, A. (2023). All platinum group metal-free and durable catalysts for direct borohydride fuel cells. ACS Applied Energy Materials, 7(2), 639-648. https://doi.org/10.1021/acsaem.3c02578 |
| Controlled li alloying by postsynthesis electrochemical treatment of Cu<sub>2</sub>ZnSn(S, Se)<sub>4</sub> absorbers for solar cells
Moser, S., Aribia, A., Scaffidi, R., Gilshtein, E., Brammertz, G., Vermang, B., … Carron, R. (2023). Controlled li alloying by postsynthesis electrochemical treatment of Cu2ZnSn(S, Se)4 absorbers for solar cells. ACS Applied Energy Materials, 6(24), 12515-12525. https://doi.org/10.1021/acsaem.3c02483 |
| On high-temperature thermal cleaning of Li<sub>7</sub>La<sub>3</sub>Zr<sub>2</sub>O<sub>12 </sub>solid-state electrolytes
Zhang, H., Paggiaro, G., Okur, F., Huwiler, J., Cancellieri, C., Jeurgens, L. P. H., … Kravchyk, K. V. (2023). On high-temperature thermal cleaning of Li7La3Zr2O12 solid-state electrolytes. ACS Applied Energy Materials, 6(13), 6972-6980. https://doi.org/10.1021/acsaem.3c00459 |
| Understanding the stability of NMC811 in lithium-ion batteries with water-in-salt electrolytes
Becker, M., Zhao, W., Pagani, F., Schreiner, C., Figi, R., Dachraoui, W., … Battaglia, C. (2022). Understanding the stability of NMC811 in lithium-ion batteries with water-in-salt electrolytes. ACS Applied Energy Materials, 5(9), 11133-11141. https://doi.org/10.1021/acsaem.2c01722 |
| Co<sup>2+</sup>, Fe<sup>2+</sup>, and Ni<sup>2+</sup>: modifiers for photocatalytic deposition of highly active Pt on graphene-based supports
Haghmoradi, N., Sarı, Z. T., Kırlıoǧlu, A. C., Yarar Kaplan, B., Dedeoǧlu, B., Zahedimaram, P., … Gürsel, S. A. (2022). Co2+, Fe2+, and Ni2+: modifiers for photocatalytic deposition of highly active Pt on graphene-based supports. ACS Applied Energy Materials, 5(11), 13939-13951. https://doi.org/10.1021/acsaem.2c02569 |
| Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO<sub>2</sub> reduction
Senocrate, A., Bernasconi, F., Rentsch, D., Kraft, K., Trottmann, M., Wichser, A., … Battaglia, C. (2022). Importance of substrate pore size and wetting behavior in gas diffusion electrodes for CO2 reduction. ACS Applied Energy Materials, 5(11), 14504-14512. https://doi.org/10.1021/acsaem.2c03054 |
| Flash lamp annealing enables thin-film solid-state batteries on aluminum foil
Chen, X., Sastre, J., Aribia, A., Gilshtein, E., & Romanyuk, Y. E. (2021). Flash lamp annealing enables thin-film solid-state batteries on aluminum foil. ACS Applied Energy Materials, 4(6), 5408-5414. https://doi.org/10.1021/acsaem.1c01283 |
| Revealing the surface chemistry for CO<sub>2</sub> hydrogenation on Cu/CeO<sub>2- x</sub> using near-ambient-pressure X-ray photoelectron spectroscopy
Li, M., Pham, T. H. M., Oveisi, E., Ko, Y., Luo, W., & Züttel, A. (2021). Revealing the surface chemistry for CO2 hydrogenation on Cu/CeO2- x using near-ambient-pressure X-ray photoelectron spectroscopy. ACS Applied Energy Materials, 4(11), 12326-12335. https://doi.org/10.1021/acsaem.1c02146 |
| Reduced barrier for ion migration in mixed-halide perovskites
McGovern, L., Grimaldi, G., Futscher, M. H., Hutter, E. M., Muscarella, L. A., Schmidt, M. C., & Ehrler, B. (2021). Reduced barrier for ion migration in mixed-halide perovskites. ACS Applied Energy Materials, 4(12), 13431-13437. https://doi.org/10.1021/acsaem.1c03095 |
| 3D Bi<sub>2</sub>Te<sub>3</sub> interconnected nanowire networks to increase thermoelectric efficiency
Ruiz-Clavijo, A., Caballero-Calero, O., Manzano, C. V., Maeder, X., Beardo, A., Cartoixà, X., … Martín-González, M. (2021). 3D Bi2Te3 interconnected nanowire networks to increase thermoelectric efficiency. ACS Applied Energy Materials, 4(12), 13556-13566. https://doi.org/10.1021/acsaem.1c02129 |
| Vapor transport deposition of methylammonium iodide for perovskite solar cells
Sahli, F., Miaz, N., Salsi, N., Bucher, C., Schafflützel, A., Guesnay, Q., … Jeangros, Q. (2021). Vapor transport deposition of methylammonium iodide for perovskite solar cells. ACS Applied Energy Materials, 4(5), 4333-4343. https://doi.org/10.1021/acsaem.0c02999 |
| Efficient perovskite solar cells with a gradient light absorption layer andlow<em> V</em><sub>OC</sub> loss obtained by interface engineering
Xuan, Z., Hao, X., Qu, X., Wang, Y., Lai, H., Chen, T., … Zheng, K. (2021). Efficient perovskite solar cells with a gradient light absorption layer andlow VOC loss obtained by interface engineering. ACS Applied Energy Materials, 4(4), 3584-3592. https://doi.org/10.1021/acsaem.1c00018 |
| Interfacial effect between aluminum-based complex hydrides and nickel-containing porous carbon sheets
Ko, Y., Lombardo, L., Li, M., Oveisi, E., Yang, H., & Züttel, A. (2020). Interfacial effect between aluminum-based complex hydrides and nickel-containing porous carbon sheets. ACS Applied Energy Materials, 3(10), 9685-9695. https://doi.org/10.1021/acsaem.0c01262 |
| Electrochemical oxidative stability of hydroborate-based solid-state electrolytes
Asakura, R., Duchêne, L., Kühnel, R. S., Remhof, A., Hagemann, H., & Battaglia, C. (2019). Electrochemical oxidative stability of hydroborate-based solid-state electrolytes. ACS Applied Energy Materials, 2(9), 6924-6930. https://doi.org/10.1021/acsaem.9b01487 |
| Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-<em>β</em>"-alumina ceramics
Bay, M. C., Heinz, M. V. F., Figi, R., Schreiner, C., Basso, D., Zanon, N., … Battaglia, C. (2019). Impact of liquid phase formation on microstructure and conductivity of Li-stabilized Na-β"-alumina ceramics. ACS Applied Energy Materials, 2(1), 687-693. https://doi.org/10.1021/acsaem.8b01715 |
| UV-initiated soft-tough multifunctional gel polymer electrolyte achieves stable-cycling Li-metal battery
Fan, W., Zhang, X., Li, C., Zhao, S., & Wang, J. (2019). UV-initiated soft-tough multifunctional gel polymer electrolyte achieves stable-cycling Li-metal battery. ACS Applied Energy Materials, 2(6), 4513-4520. https://doi.org/10.1021/acsaem.9b00766 |
| Sn-decorated Cu for selective electrochemical CO<sub>2</sub> to CO conversion: precision architecture beyond composition design
Ju, W., Zeng, J., Bejtka, K., Ma, H., Rentsch, D., Castellino, M., … Battaglia, C. (2019). Sn-decorated Cu for selective electrochemical CO2 to CO conversion: precision architecture beyond composition design. ACS Applied Energy Materials, 2(1), 867-872. https://doi.org/10.1021/acsaem.8b01944 |
| Energy-yielding mini heat thermocells with WS<sub>2</sub> water-splitting dual system to recycle wasted heat
Lai, Y. S., Del Rosario, M. A. J. V. G., Chen, W. F., Yen, S. C., Pan, F., Ren, Q., & Su, Y. H. (2019). Energy-yielding mini heat thermocells with WS2 water-splitting dual system to recycle wasted heat. ACS Applied Energy Materials, 2(10), 7092-7103. https://doi.org/10.1021/acsaem.9b01010 |
| Influence of surface state on the electrochemical performance of nickel-based cermet electrodes during steam electrolysis
Mewafy, B., Paloukis, F., Papazisi, K. M., Balomenou, S. P., Luo, W., Teschner, D., … Zafeiratos, S. (2019). Influence of surface state on the electrochemical performance of nickel-based cermet electrodes during steam electrolysis. ACS Applied Energy Materials, 2(10), 7045-7055. https://doi.org/10.1021/acsaem.9b00779 |
| Aluminum-assisted densification of cosputtered lithium garnet electrolyte films for solid-state batteries
Sastre, J., Lin, T. Y., Filippin, A. N., Priebe, A., Avancini, E., Michler, J., … Buecheler, S. (2019). Aluminum-assisted densification of cosputtered lithium garnet electrolyte films for solid-state batteries. ACS Applied Energy Materials, 2(12), 8511-8524. https://doi.org/10.1021/acsaem.9b01387 |