Active Filters

  • (-) Journal = ACS Catalysis
  • (-) Keywords ≠ N-doped carbon
Search Results 1 - 20 of 24
Select Page
Formaldehyde-induced deactivation of ZSM5 catalysts during the methanol-to-hydrocarbons conversion
Pare, C. W. P., Rzepka, P., Hemberger, P., Bodi, A., Hauert, R., van Bokhoven, J. A., & Paunović, V. (2024). Formaldehyde-induced deactivation of ZSM5 catalysts during the methanol-to-hydrocarbons conversion. ACS Catalysis, 463-474. https://doi.org/10.1021/acscatal.3c04279
Co<sub>1-x</sub>Fe<sub>x</sub>O<sub>y</sub> oxygen evolution nanocatalysts: on the way to resolve (electro)chemically triggered surface-bulk discrepancy
Aegerter, D., Fabbri, E., Yüzbasi, N. S., Diklić, N., Clark, A. H., Nachtegaal, M., … Schmidt, T. J. (2023). Co1-xFexOy oxygen evolution nanocatalysts: on the way to resolve (electro)chemically triggered surface-bulk discrepancy. ACS Catalysis, 13, 15899-15909. https://doi.org/10.1021/acscatal.3c04138
From single crystal to single atom catalysts: structural factors influencing the performance of metal catalysts for CO<sub>2</sub> electroreduction
Koolen, C. D., Luo, W., & Züttel, A. (2023). From single crystal to single atom catalysts: structural factors influencing the performance of metal catalysts for CO2 electroreduction. ACS Catalysis, 13(2), 948-973. https://doi.org/10.1021/acscatal.2c03842
Lattice-stabilized chromium atoms on ceria for N<sub>2</sub>O synthesis
Yang, Q., Surin, I., Geiger, J., Eliasson, H., Agrachev, M., Kondratenko, V. A., … Pérez-Ramírez, J. (2023). Lattice-stabilized chromium atoms on ceria for N2O synthesis. ACS Catalysis, 13, 15977-15990. https://doi.org/10.1021/acscatal.3c04463
Electrochemical CO<sub>2</sub> reduction over copper phthalocyanine derived catalysts with enhanced selectivity for multicarbon products
Zhang, J., Pham, T. H. M., Gao, Z., Li, M., Ko, Y., Lombardo, L., … Züttel, A. (2023). Electrochemical CO2 reduction over copper phthalocyanine derived catalysts with enhanced selectivity for multicarbon products. ACS Catalysis, 13(14), 9326-9335. https://doi.org/10.1021/acscatal.3c01439
Impact of nonzeolite-catalyzed formation of formaldehyde on the methanol-to-hydrocarbons conversion
Paunović, V., Hemberger, P., Bodi, A., Hauert, R., & van Bokhoven, J. A. (2022). Impact of nonzeolite-catalyzed formation of formaldehyde on the methanol-to-hydrocarbons conversion. ACS Catalysis, 12(21), 13426-13434. https://doi.org/10.1021/acscatal.2c02953
Surface oxygenate species on TiC reinforce cobalt-catalyzed fischer-tropsch synthesis
Jiang, Q., Luo, W., Piao, Y., Matsumoto, H., Liu, X., Züttel, A., … Liu, Y. (2021). Surface oxygenate species on TiC reinforce cobalt-catalyzed fischer-tropsch synthesis. ACS Catalysis, 11(13), 8087-8096. https://doi.org/10.1021/acscatal.1c00150
Activation matters: hysteresis effects during electrochemical looping of colloidal Ag nanowire catalysts
Hu, H., Liu, M., Kong, Y., Mysuru, N., Sun, C., Gálvez-Vázquez, M. de J., … Broekmann, P. (2020). Activation matters: hysteresis effects during electrochemical looping of colloidal Ag nanowire catalysts. ACS Catalysis, 10(15), 8503-8514. https://doi.org/10.1021/acscatal.0c02026
Imaging catalysis: operando investigation of the CO<sub>2</sub> hydrogenation reaction dynamics by means of infrared thermography
Mutschler, R., Moioli, E., Zhao, K., Lombardo, L., Oveisi, E., Porta, A., … Züttel, A. (2020). Imaging catalysis: operando investigation of the CO2 hydrogenation reaction dynamics by means of infrared thermography. ACS Catalysis, 10(3), 1721-1730. https://doi.org/10.1021/acscatal.9b04475
Activation of copper species on carbon nitride for enhanced activity in the arylation of amines
Vorobyeva, E., Gerken, V. C., Mitchell, S., Sabadell-Rendón, A., Hauert, R., Xi, S., … Pérez-Ramírez, J. (2020). Activation of copper species on carbon nitride for enhanced activity in the arylation of amines. ACS Catalysis, 10(19), 11069-11080. https://doi.org/10.1021/acscatal.0c03164
Role of zirconia in indium oxide-catalyzed CO&lt;sub&gt;2&lt;/sub&gt; hydrogenation to methanol
Frei, M. S., Mondelli, C., Cesarini, A., Krumeich, F., Hauert, R., Stewart, J. A., … Pérez-Ramírez, J. (2019). Role of zirconia in indium oxide-catalyzed CO2 hydrogenation to methanol. ACS Catalysis, 10, 1133-1145. https://doi.org/10.1021/acscatal.9b03305
Photonic curing: activation and stabilization of metal membrane catalysts (MMCs) for the electrochemical reduction of CO&lt;sub&gt;2&lt;/sub&gt;
Hou, Y., Bolat, S., Bornet, A., Romanyuk, Y. E., Guo, H., Moreno-García, P., … Broekmann, P. (2019). Photonic curing: activation and stabilization of metal membrane catalysts (MMCs) for the electrochemical reduction of CO2. ACS Catalysis, 9(10), 9518-9529. https://doi.org/10.1021/acscatal.9b03664
Boosting CO production in electrocatalytic CO<sub>2</sub> reduction on highly porous Zn catalysts
Luo, W., Zhang, J., Li, M., & Züttel, A. (2019). Boosting CO production in electrocatalytic CO2 reduction on highly porous Zn catalysts. ACS Catalysis, 9(5), 3783-3791. https://doi.org/10.1021/acscatal.8b05109
Efficient base-metal NiMn/TiO&lt;sub&gt;2&lt;/sub&gt; catalyst for CO&lt;sub&gt;2&lt;/sub&gt; methanation
Vrijburg, W. L., Moioli, E., Chen, W., Zhang, M., Terlingen, B. J. P., Zijlstra, B., … Hensen, E. J. M. (2019). Efficient base-metal NiMn/TiO2 catalyst for CO2 methanation. ACS Catalysis, 9(9), 7823-7839. https://doi.org/10.1021/acscatal.9b01968
Role of carbonaceous supports and potassium promoter on higher alcohols synthesis over copper–iron catalysts
Luk, H. T., Mondelli, C., Mitchell, S., Siol, S., Stewart, J. A., Curulla Ferré, D., & Pérez-Ramírez, J. (2018). Role of carbonaceous supports and potassium promoter on higher alcohols synthesis over copper–iron catalysts. ACS Catalysis, 8(10), 9604-9618. https://doi.org/10.1021/acscatal.8b02714
Selective and stable electroreduction of CO&lt;sub&gt;2&lt;/sub&gt; to CO at the copper/indium interface
Luo, W., Xie, W., Mutschler, R., Oveisi, E., De Gregorio, G. L., Buonsanti, R., & Züttel, A. (2018). Selective and stable electroreduction of CO2 to CO at the copper/indium interface. ACS Catalysis, 8(7), 6571-6581. https://doi.org/10.1021/acscatal.7b04457
Selective methane oxybromination over nanostructured ceria catalysts
Paunović, V., Zichittella, G., Mitchell, S., Hauert, R., & Pérez-Ramírez, J. (2018). Selective methane oxybromination over nanostructured ceria catalysts. ACS Catalysis, 8, 291-303. https://doi.org/10.1021/acscatal.7b03074
Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide
Kim, B. J., Abbott, D. F., Cheng, X., Fabbri, E., Nachtegaal, M., Bozza, F., … Schmidt, T. J. (2017). Unraveling thermodynamics, stability, and oxygen evolution activity of strontium ruthenium perovskite oxide. ACS Catalysis, 7(5), 3245-3256. https://doi.org/10.1021/acscatal.6b03171
Catalytically active protein coatings: toward enzymatic cascade reactions at the intercolloidal level
Männel, M. J., Kreuzer, L. P., Goldhahn, C., Schubert, J., Hartl, M. J., & Chanana, M. (2017). Catalytically active protein coatings: toward enzymatic cascade reactions at the intercolloidal level. ACS Catalysis, 7(3), 1664-1672. https://doi.org/10.1021/acscatal.6b03072
Pd subnano-clusters on TiO<SUB>2</SUB> for solar-light removal of NO
Fujiwara, K., Müller, U., & Pratsinis, S. E. (2016). Pd subnano-clusters on TiO2 for solar-light removal of NO. ACS Catalysis, 6(3), 1887-1893. https://doi.org/10.1021/acscatal.5b02685