Active Filters

  • (-) Journal = ACS Nano
  • (-) Empa Laboratories ≠ 404 Biointerfaces
  • (-) Journal = ACS Nano
Search Results 1 - 20 of 121

Pages

  • RSS Feed
Select Page
Colloidal aziridinium lead bromide quantum dots
Bodnarchuk, M. I., Feld, L. G., Zhu, C., Boehme, S. C., Bertolotti, F., Avaro, J., … Kovalenko, M. V. (2024). Colloidal aziridinium lead bromide quantum dots. ACS Nano, 18, 5684-5697. https://doi.org/10.1021/acsnano.3c11579
Strong light-matter coupling in lead halide perovskite quantum dot solids
Bujalance, C., Caliò, L., Dirin, D. N., Tiede, D. O., Galisteo-López, J. F., Feist, J., … Míguez, H. (2024). Strong light-matter coupling in lead halide perovskite quantum dot solids. ACS Nano, 18(6), 4922-4931. https://doi.org/10.1021/acsnano.3c10358
Electrochemical activation of Fe-LiF conversion cathodes in thin-film solid-state batteries
Casella, J., Morzy, J., Gilshtein, E., Yarema, M., Futscher, M. H., & Romanyuk, Y. E. (2024). Electrochemical activation of Fe-LiF conversion cathodes in thin-film solid-state batteries. ACS Nano, 18(5), 4352-4359. https://doi.org/10.1021/acsnano.3c10146
Environmental and health impacts of graphene and other two-dimensional materials: a graphene flagship perspective
Lin, H., Buerki-Thurnherr, T., Kaur, J., Wick, P., Pelin, M., Tubaro, A., … Bianco, A. (2024). Environmental and health impacts of graphene and other two-dimensional materials: a graphene flagship perspective. ACS Nano. https://doi.org/10.1021/acsnano.3c09699
Hybrid amyloid-chitin nanofibrils for magnetic and catalytic aerogels
Peydayesh, M., Boschi, E., Bagnani, M., Tay, D., Donat, F., Almohammadi, H., … Mezzenga, R. (2024). Hybrid amyloid-chitin nanofibrils for magnetic and catalytic aerogels. ACS Nano, 18(8), 6690-6701. https://doi.org/10.1021/acsnano.4c00883
All-perovskite multicomponent nanocrystal superlattices
Sekh, T. V., Cherniukh, I., Kobiyama, E., Sheehan, T. J., Manoli, A., Zhu, C., … Kovalenko, M. V. (2024). All-perovskite multicomponent nanocrystal superlattices. ACS Nano, 18(11), 8423-8436. https://doi.org/10.1021/acsnano.3c13062
Hot excitons cool in metal halide perovskite nanocrystals as fast as CdSe nanocrystals
Strandell, D. P., Zenatti, D., Nagpal, P., Ghosh, A., Dirin, D. N., Kovalenko, M. V., & Kambhampati, P. (2024). Hot excitons cool in metal halide perovskite nanocrystals as fast as CdSe nanocrystals. ACS Nano, 18(1), 1054-1062. https://doi.org/10.1021/acsnano.3c10301
Strongly confined CsPbBr<sub>3</sub> quantum dots as quantum emitters and building blocks for rhombic superlattices
Boehme, S. C., Bodnarchuk, M. I., Burian, M., Bertolotti, F., Cherniukh, I., Bernasconi, C., … Kovalenko, M. V. (2023). Strongly confined CsPbBr3 quantum dots as quantum emitters and building blocks for rhombic superlattices. ACS Nano, 17(3), 2089-2100. https://doi.org/10.1021/acsnano.2c07677
Confinement and exciton binding energy effects on hot carrier cooling in lead halide perovskite nanomaterials
Carwithen, B. P., Hopper, T. R., Ge, Z., Mondal, N., Wang, T., Mazlumian, R., … Bakulin, A. A. (2023). Confinement and exciton binding energy effects on hot carrier cooling in lead halide perovskite nanomaterials. ACS Nano, 17(7), 6638-6648. https://doi.org/10.1021/acsnano.2c12373
Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries
Dachraoui, W., Pauer, R., Battaglia, C., & Erni, R. (2023). Operando electrochemical liquid cell scanning transmission electron microscopy investigation of the growth and evolution of the mosaic solid electrolyte interphase for lithium-ion batteries. ACS Nano, 17(20), 20434-20444. https://doi.org/10.1021/acsnano.3c06879
Rational design of Ti<sub>3</sub>C<sub>2</sub>T<sub><em>x</em></sub> MXene inks for conductive, transparent films
Guo, T., Zhou, D., Deng, S., Jafarpour, M., Avaro, J., Neels, A., … Zhang, C. (2023). Rational design of Ti3C2Tx MXene inks for conductive, transparent films. ACS Nano, 17(4), 3737-3749. https://doi.org/10.1021/acsnano.2c11180
Exploiting mass spectrometry to unlock the mechanism of nanoparticle-induced inflammasome activation
Gupta, G., Kaur, J., Bhattacharya, K., Chambers, B. J., Gazzi, A., Furesi, G., … Fadeel, B. (2023). Exploiting mass spectrometry to unlock the mechanism of nanoparticle-induced inflammasome activation. ACS Nano, 17(17), 17451-17467. https://doi.org/10.1021/acsnano.3c05600
Ligand effects in assembly of cubic and spherical nanocrystals: applications to packing of perovskite nanocubes
Hallstrom, J., Cherniukh, I., Zha, X., Kovalenko, M. V., & Travesset, A. (2023). Ligand effects in assembly of cubic and spherical nanocrystals: applications to packing of perovskite nanocubes. ACS Nano, 17(8), 7219-7228. https://doi.org/10.1021/acsnano.2c10079
Edge contacts to atomically precise graphene nanoribbons
Huang, W., Braun, O., Indolese, D. I., Borin Barin, G., Gandus, G., Stiefel, M., … Perrin, M. L. (2023). Edge contacts to atomically precise graphene nanoribbons. ACS Nano, 17, 18706-18715. https://doi.org/10.1021/acsnano.3c00782
Colloidal ternary telluride quantum dots for tunable phase change optics in the visible and near-infrared
Kumaar, D., Can, M., Portner, K., Weigand, H., Yarema, O., Wintersteller, S., … Yarema, M. (2023). Colloidal ternary telluride quantum dots for tunable phase change optics in the visible and near-infrared. ACS Nano, 17(7), 6985-6997. https://doi.org/10.1021/acsnano.3c01187
Direct observation of ultrafast lattice distortions during exciton-polaron formation in lead halide perovskite nanocrystals
Seiler, H., Zahn, D., Taylor, V. C. A., Bodnarchuk, M. I., Windsor, Y. W., Kovalenko, M. V., & Ernstorfer, R. (2023). Direct observation of ultrafast lattice distortions during exciton-polaron formation in lead halide perovskite nanocrystals. ACS Nano, 17(3), 1979-1988. https://doi.org/10.1021/acsnano.2c06727
Driving a third generation molecular motor with electrons across a surface
Srivastava, G., Štacko, P., Mendieta-Moreno, J. I., Edalatmanesh, S., Kistemaker, J. C. M., Heideman, G. H., … Ernst, K. H. (2023). Driving a third generation molecular motor with electrons across a surface. ACS Nano, 17(4), 3931-3938. https://doi.org/10.1021/acsnano.2c12340
Spin-stabilization by coulomb blockade in a vanadium dimer in WSe<sub>2</sub>
Stolz, S., Hou, B., Wang, D., Kozhakhmetov, A., Dong, C., Gröning, O., … Schuler, B. (2023). Spin-stabilization by coulomb blockade in a vanadium dimer in WSe2. ACS Nano, 17(23), 23422-23429. https://doi.org/10.1021/acsnano.3c04841
Enhancing multiexcitonic emission in metal-halide perovskites by quantum confinement
Strandell, D., Dirin, D., Zenatti, D., Nagpal, P., Ghosh, A., Raino, G., … Kambhampati, P. (2023). Enhancing multiexcitonic emission in metal-halide perovskites by quantum confinement. ACS Nano, 17(24), 24910-24918. https://doi.org/10.1021/acsnano.3c06497
Dilute rhenium doping and its impact on defects in MoS<sub>2</sub>
Torsi, R., Munson, K. T., Pendurthi, R., Marques, E., Van Troeye, B., Huberich, L., … Robinson, J. A. (2023). Dilute rhenium doping and its impact on defects in MoS2. ACS Nano, 17(16), 15629-15640. https://doi.org/10.1021/acsnano.3c02626
 

Pages