Active Filters

  • (-) Journal = ACS Nano
  • (-) Empa Laboratories ≠ 405 Transport at Nanoscale Interfaces
Search Results 1 - 20 of 79

Pages

  • RSS Feed
Select Page
Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2
Qiu, G., Gai, Z., Saleh, L., Tang, J., Gui, T., Kullak-Ublick, G. A., & Wang, J. (2021). Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2. ACS Nano, 15(4), 7536-7546. https://doi.org/10.1021/acsnano.1c00957
Unraveling the origin of the long fluorescence decay component of cesium lead halide perovskite nanocrystals
Becker, M. A., Bernasconi, C., Bodnarchuk, M. I., Rainò, G., Kovalenko, M. V., Norris, D. J., … Stöferle, T. (2020). Unraveling the origin of the long fluorescence decay component of cesium lead halide perovskite nanocrystals. ACS Nano, 14(11), 14939-14946. https://doi.org/10.1021/acsnano.0c04401
Biomimetic presentation of cryptic ligands <em>via</em> single-chain nanogels for synergistic regulation of stem cells
Chen, X., Lai, N. C. H., Wei, K., Li, R., Cui, M., Yang, B., … Bian, L. (2020). Biomimetic presentation of cryptic ligands via single-chain nanogels for synergistic regulation of stem cells. ACS Nano, 14(4), 4027-4035. https://doi.org/10.1021/acsnano.9b08564
Luminescent and hydrophobic wood films as optical lighting materials
Fu, Q., Tu, K., Goldhahn, C., Keplinger, T., Adobes-Vidal, M., Sorieul, M., & Burgert, I. (2020). Luminescent and hydrophobic wood films as optical lighting materials. ACS Nano, 14(10), 13775-13783. https://doi.org/10.1021/acsnano.0c06110
High-mobility In<sub>2</sub>O<sub>3</sub>:H electrodes for four-terminal perovskite/CuInSe<sub>2</sub> tandem solar cells
Jiang, Y., Feurer, T., Carron, R., Torres Sevilla, G., Moser, T., Pisoni, S., … Fu, F. (2020). High-mobility In2O3:H electrodes for four-terminal perovskite/CuInSe2 tandem solar cells. ACS Nano, 14(6), 7502-7512. https://doi.org/10.1021/acsnano.0c03265
Fast neutron imaging with semiconductor nanocrystal scintillators
McCall, K. M., Sakhatskyi, K., Lehmann, E., Walfort, B., Losko, A. S., Montanarella, F., … Kovalenko, M. V. (2020). Fast neutron imaging with semiconductor nanocrystal scintillators. ACS Nano, 14(11), 14686-14697. https://doi.org/10.1021/acsnano.0c06381
Exclusive electron transport in core@shell PbTe@PbS colloidal semiconductor nanocrystal assemblies
Miranti, R., Shin, D., Septianto, R. D., Ibáñez, M., Kovalenko, M. V., Matsushita, N., … Bisri, S. Z. (2020). Exclusive electron transport in core@shell PbTe@PbS colloidal semiconductor nanocrystal assemblies. ACS Nano, 14(3), 3242-3250. https://doi.org/10.1021/acsnano.9b08687
Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection
Qiu, G., Gai, Z., Tao, Y., Schmitt, J., Kullak-Ublick, G. A., & Wang, J. (2020). Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 14(5), 5268-5277. https://doi.org/10.1021/acsnano.0c02439
Conformal bacterial cellulose coatings as lubricious surfaces
Rühs, P. A., Malollari, K. G., Binelli, M. R., Crockett, R., Balkenende, D. W. R., Studart, A. R., & Messersmith, P. B. (2020). Conformal bacterial cellulose coatings as lubricious surfaces. ACS Nano, 14(4), 3885-3895. https://doi.org/10.1021/acsnano.9b09956
3D flexible, conductive, and recyclable Ti<sub>3</sub>C<sub>2</sub>T<em><sub>X</sub></em> MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode
Shi, H., Yue, M., Zhang, C. J., Dong, Y., Lu, P., Zheng, S., … Wu, Z. S. (2020). 3D flexible, conductive, and recyclable Ti3C2TX MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano, 14(7), 8678-8688. https://doi.org/10.1021/acsnano.0c03042
Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications
Sun, J., Guo, H., Ribera, J., Wu, C., Tu, K., Binelli, M., … Burgert, I. (2020). Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano, 14(11), 14665-14674. https://doi.org/10.1021/acsnano.0c05493
Functional nanoassemblies of cyclic polymers show amplified responsiveness and enhanced protein-binding ability
Trachsel, L., Romio, M., Grob, B., Zenobi-Wong, M., Spencer, N. D., Ramakrishna, S. N., & Benetti, E. M. (2020). Functional nanoassemblies of cyclic polymers show amplified responsiveness and enhanced protein-binding ability. ACS Nano, 14(8), 10054-10067. https://doi.org/10.1021/acsnano.0c03239
Colloidal transformations in MS2 virus particles: driven by pH, influenced by natural organic matter
Watts, S., Julian, T. R., Maniura-Weber, K., Graule, T., & Salentinig, S. (2020). Colloidal transformations in MS2 virus particles: driven by pH, influenced by natural organic matter. ACS Nano, 14(2), 1879-1887. https://doi.org/10.1021/acsnano.9b08112
On-surface hydrogenation of buckybowls: from curved aromatic molecules to planar non-Kekulé aromatic hydrocarbons
Wäckerlin, C., Gallardo, A., Mairena, A., Baljozovic, M., Cahlík, A., Antalík, A., … Ernst, K. H. (2020). On-surface hydrogenation of buckybowls: from curved aromatic molecules to planar non-Kekulé aromatic hydrocarbons. ACS Nano, 14(12), 16735-16742. https://doi.org/10.1021/acsnano.0c04488
Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding
Zeng, Z., Wu, T., Han, D., Ren, Q., Siqueira, G., & Nyström, G. (2020). Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano, 14(3), 2927-2938. https://doi.org/10.1021/acsnano.9b07452
Template-assisted<em> in situ s</em>ynthesis of Ag@Au bimetallic nanostructures employing liquid-phase transmission electron microscopy
Ahmad, N., Bon, M., Passerone, D., & Erni, R. (2019). Template-assisted in situ synthesis of Ag@Au bimetallic nanostructures employing liquid-phase transmission electron microscopy. ACS Nano, 13, 13333-13342. https://doi.org/10.1021/acsnano.9b06614
Crystal structure, morphology and surface termination of cyan-emissive, 6-monolayers-thick CsPbBr<sub>3</sub> nanoplatelets from X-ray total scattering
Bertolotti, F., Nedelcu, G., Vivani, A., Cervellino, A., Masciocchi, N., Guagliardi, A., & Kovalenko, M. V. (2019). Crystal structure, morphology and surface termination of cyan-emissive, 6-monolayers-thick CsPbBr3 nanoplatelets from X-ray total scattering. ACS Nano, 13(12), 14294-14307. https://doi.org/10.1021/acsnano.9b07626
Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals
Dirin, D. N., Benin, B. M., Yakunin, S., Krumeich, F., Raino, G., Frison, R., & Kovalenko, M. V. (2019). Microcarrier-assisted inorganic shelling of lead halide perovskite nanocrystals. ACS Nano, 13(10), 11642-11652. https://doi.org/10.1021/acsnano.9b05481
Detachment dynamics of graphene nanoribbons on gold
Gigli, L., Kawai, S., Guerra, R., Manini, N., Pawlak, R., Feng, X., … Vanossi, A. (2019). Detachment dynamics of graphene nanoribbons on gold. ACS Nano, 13(1), 689-697. https://doi.org/10.1021/acsnano.8b07894
Hierarchical porous wood cellulose scaffold with atomically dispersed Pt catalysts for low-temperature ethylene decomposition
Guo, H., Warnicke, P., Griffa, M., Müller, U., Chen, Z., Schaeublin, R., … Luković, M. (2019). Hierarchical porous wood cellulose scaffold with atomically dispersed Pt catalysts for low-temperature ethylene decomposition. ACS Nano, 13(12), 14337-14347. https://doi.org/10.1021/acsnano.9b07801
 

Pages