Active Filters

  • (-) Journal = ACS Nano
  • (-) Keywords ≠ nanocrystals
Search Results 1 - 20 of 75

Pages

  • RSS Feed
Select Page
Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2
Qiu, G., Gai, Z., Saleh, L., Tang, J., Gui, T., Kullak-Ublick, G. A., & Wang, J. (2021). Thermoplasmonic-assisted cyclic cleavage amplification for self-validating plasmonic detection of SARS-CoV-2. ACS Nano, 15(4), 7536-7546. https://doi.org/10.1021/acsnano.1c00957
Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials
Zeng, Z., Mavrona, E., Sacré, D., Kummer, N., Cao, J., Müller, L. A. E., … Nyström, G. (2021). Terahertz birefringent biomimetic aerogels based on cellulose nanofibers and conductive nanomaterials. ACS Nano, 15(4), 7451-7462. https://doi.org/10.1021/acsnano.1c00856
Biomimetic presentation of cryptic ligands <em>via</em> single-chain nanogels for synergistic regulation of stem cells
Chen, X., Lai, N. C. H., Wei, K., Li, R., Cui, M., Yang, B., … Bian, L. (2020). Biomimetic presentation of cryptic ligands via single-chain nanogels for synergistic regulation of stem cells. ACS Nano, 14(4), 4027-4035. https://doi.org/10.1021/acsnano.9b08564
Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors
El Abbassi, M., Perrin, M. L., Borin Barin, G., Sangtarash, S., Overbeck, J., Braun, O., … Calame, M. (2020). Controlled quantum dot formation in atomically engineered graphene nanoribbon field-effect transistors. ACS Nano, 14(5), 5754-5762. https://doi.org/10.1021/acsnano.0c00604
Luminescent and hydrophobic wood films as optical lighting materials
Fu, Q., Tu, K., Goldhahn, C., Keplinger, T., Adobes-Vidal, M., Sorieul, M., & Burgert, I. (2020). Luminescent and hydrophobic wood films as optical lighting materials. ACS Nano, 14(10), 13775-13783. https://doi.org/10.1021/acsnano.0c06110
High-mobility In<sub>2</sub>O<sub>3</sub>:H electrodes for four-terminal perovskite/CuInSe<sub>2</sub> tandem solar cells
Jiang, Y., Feurer, T., Carron, R., Torres Sevilla, G., Moser, T., Pisoni, S., … Fu, F. (2020). High-mobility In2O3:H electrodes for four-terminal perovskite/CuInSe2 tandem solar cells. ACS Nano, 14(6), 7502-7512. https://doi.org/10.1021/acsnano.0c03265
Fast neutron imaging with semiconductor nanocrystal scintillators
McCall, K. M., Sakhatskyi, K., Lehmann, E., Walfort, B., Losko, A. S., Montanarella, F., … Kovalenko, M. V. (2020). Fast neutron imaging with semiconductor nanocrystal scintillators. ACS Nano, 14(11), 14686-14697. https://doi.org/10.1021/acsnano.0c06381
Exclusive electron transport in core@shell PbTe@PbS colloidal semiconductor nanocrystal assemblies
Miranti, R., Shin, D., Septianto, R. D., Ibáñez, M., Kovalenko, M. V., Matsushita, N., … Bisri, S. Z. (2020). Exclusive electron transport in core@shell PbTe@PbS colloidal semiconductor nanocrystal assemblies. ACS Nano, 14(3), 3242-3250. https://doi.org/10.1021/acsnano.9b08687
Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection
Qiu, G., Gai, Z., Tao, Y., Schmitt, J., Kullak-Ublick, G. A., & Wang, J. (2020). Dual-functional plasmonic photothermal biosensors for highly accurate severe acute respiratory syndrome coronavirus 2 detection. ACS Nano, 14(5), 5268-5277. https://doi.org/10.1021/acsnano.0c02439
Conformal bacterial cellulose coatings as lubricious surfaces
Rühs, P. A., Malollari, K. G., Binelli, M. R., Crockett, R., Balkenende, D. W. R., Studart, A. R., & Messersmith, P. B. (2020). Conformal bacterial cellulose coatings as lubricious surfaces. ACS Nano, 14(4), 3885-3895. https://doi.org/10.1021/acsnano.9b09956
3D flexible, conductive, and recyclable Ti<sub>3</sub>C<sub>2</sub>T<em><sub>X</sub></em> MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode
Shi, H., Yue, M., Zhang, C. J., Dong, Y., Lu, P., Zheng, S., … Wu, Z. S. (2020). 3D flexible, conductive, and recyclable Ti3C2TX MXene-melamine foam for high-areal-capacity and long-lifetime alkali-metal anode. ACS Nano, 14(7), 8678-8688. https://doi.org/10.1021/acsnano.0c03042
Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications
Sun, J., Guo, H., Ribera, J., Wu, C., Tu, K., Binelli, M., … Burgert, I. (2020). Sustainable and biodegradable wood sponge piezoelectric nanogenerator for sensing and energy harvesting applications. ACS Nano, 14(11), 14665-14674. https://doi.org/10.1021/acsnano.0c05493
Functional nanoassemblies of cyclic polymers show amplified responsiveness and enhanced protein-binding ability
Trachsel, L., Romio, M., Grob, B., Zenobi-Wong, M., Spencer, N. D., Ramakrishna, S. N., & Benetti, E. M. (2020). Functional nanoassemblies of cyclic polymers show amplified responsiveness and enhanced protein-binding ability. ACS Nano, 14(8), 10054-10067. https://doi.org/10.1021/acsnano.0c03239
Colloidal transformations in MS2 virus particles: driven by pH, influenced by natural organic matter
Watts, S., Julian, T. R., Maniura-Weber, K., Graule, T., & Salentinig, S. (2020). Colloidal transformations in MS2 virus particles: driven by pH, influenced by natural organic matter. ACS Nano, 14(2), 1879-1887. https://doi.org/10.1021/acsnano.9b08112
On-surface hydrogenation of buckybowls: from curved aromatic molecules to planar non-Kekulé aromatic hydrocarbons
Wäckerlin, C., Gallardo, A., Mairena, A., Baljozovic, M., Cahlík, A., Antalík, A., … Ernst, K. H. (2020). On-surface hydrogenation of buckybowls: from curved aromatic molecules to planar non-Kekulé aromatic hydrocarbons. ACS Nano, 14(12), 16735-16742. https://doi.org/10.1021/acsnano.0c04488
Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding
Zeng, Z., Wu, T., Han, D., Ren, Q., Siqueira, G., & Nyström, G. (2020). Ultralight, flexible, and biomimetic nanocellulose/silver nanowire aerogels for electromagnetic interference shielding. ACS Nano, 14(3), 2927-2938. https://doi.org/10.1021/acsnano.9b07452
Template-assisted<em> in situ s</em>ynthesis of Ag@Au bimetallic nanostructures employing liquid-phase transmission electron microscopy
Ahmad, N., Bon, M., Passerone, D., & Erni, R. (2019). Template-assisted in situ synthesis of Ag@Au bimetallic nanostructures employing liquid-phase transmission electron microscopy. ACS Nano, 13, 13333-13342. https://doi.org/10.1021/acsnano.9b06614
Crystal structure, morphology and surface termination of cyan-emissive, 6-monolayers-thick CsPbBr<sub>3</sub> nanoplatelets from X-ray total scattering
Bertolotti, F., Nedelcu, G., Vivani, A., Cervellino, A., Masciocchi, N., Guagliardi, A., & Kovalenko, M. V. (2019). Crystal structure, morphology and surface termination of cyan-emissive, 6-monolayers-thick CsPbBr3 nanoplatelets from X-ray total scattering. ACS Nano, 13(12), 14294-14307. https://doi.org/10.1021/acsnano.9b07626
Detachment dynamics of graphene nanoribbons on gold
Gigli, L., Kawai, S., Guerra, R., Manini, N., Pawlak, R., Feng, X., … Vanossi, A. (2019). Detachment dynamics of graphene nanoribbons on gold. ACS Nano, 13(1), 689-697. https://doi.org/10.1021/acsnano.8b07894
Hierarchical porous wood cellulose scaffold with atomically dispersed Pt catalysts for low-temperature ethylene decomposition
Guo, H., Warnicke, P., Griffa, M., Müller, U., Chen, Z., Schaeublin, R., … Luković, M. (2019). Hierarchical porous wood cellulose scaffold with atomically dispersed Pt catalysts for low-temperature ethylene decomposition. ACS Nano, 13(12), 14337-14347. https://doi.org/10.1021/acsnano.9b07801
 

Pages