Active Filters

  • (-) Journal = ACS Sustainable Chemistry and Engineering
Search Results 1 - 13 of 13
  • CSV Spreadsheet
  • Excel Spreadsheet
  • RSS Feed
Select Page
3D-printing nanocellulose-poly(3-hydroxybutyrate-<em>co</em>-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling
Giubilini, A., Siqueira, G., Clemens, F. J., Sciancalepore, C., Messori, M., Nyström, G., & Bondioli, F. (2020). 3D-printing nanocellulose-poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) biodegradable composites by fused deposition modeling. ACS Sustainable Chemistry and Engineering, 8(27), 10292-10302. https://doi.org/10.1021/acssuschemeng.0c03385
Wood-gelatin bio-composite membranes with tunable flux
Goldhahn, C., Schubert, M., Lüthi, T., Keplinger, T., Burgert, I., & Chanana, M. (2020). Wood-gelatin bio-composite membranes with tunable flux. ACS Sustainable Chemistry and Engineering, 8(18), 7205-7213. https://doi.org/10.1021/acssuschemeng.0c01856
Struvite mineralized wood as sustainable building material: mechanical and combustion behavior
Guo, H., Özparpucu, M., Windeisen-Holzhauser, E., Schlepütz, C. M., Quadranti, E., Gaan, S., … Burgert, I. (2020). Struvite mineralized wood as sustainable building material: mechanical and combustion behavior. ACS Sustainable Chemistry and Engineering, 8(28), 10402-10412. https://doi.org/10.1021/acssuschemeng.0c01769
Tunability and scalability of single-atom catalysts based on carbon nitride
Chen, Z., Mitchell, S., Krumeich, F., Hauert, R., Yakunin, S., Kovalenko, M. V., & Pérez-Ramírez, J. (2019). Tunability and scalability of single-atom catalysts based on carbon nitride. ACS Sustainable Chemistry and Engineering, 7(5), 5223-5230. https://doi.org/10.1021/acssuschemeng.8b06148
Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation
Ju, W., Heinz, M. V. F., Pusterla, L., Hofer, M., Fumey, B., Castiglioni, R., … Vogt, U. F. (2018). Lab-scale alkaline water electrolyzer for bridging material fundamentals with realistic operation. ACS Sustainable Chemistry and Engineering, 6(4), 4829-4837. https://doi.org/10.1021/acssuschemeng.7b04173
3D printing of strong lightweight cellular structures using polysaccharide-based composite foams
Voisin, H. P., Gordeyeva, K., Siqueira, G., Hausmann, M. K., Studart, A. R., & Bergström, L. (2018). 3D printing of strong lightweight cellular structures using polysaccharide-based composite foams. ACS Sustainable Chemistry and Engineering, 6(12), 17160-17167. https://doi.org/10.1021/acssuschemeng.8b04549
Tuning poly(3-hydroxybutyrate) (P3HB) properties by tailored segmented bio-copolymers
Fernández–Ronco, M. P., Gradzik, B., Gooneie, A., Hufenus, R., & El Fray, M. (2017). Tuning poly(3-hydroxybutyrate) (P3HB) properties by tailored segmented bio-copolymers. ACS Sustainable Chemistry and Engineering, 5(11), 11060-11068. https://doi.org/10.1021/acssuschemeng.7b03023
Wood composites with wettability patterns prepared by controlled and selective chemical modification of a three-dimensional wood scaffold
Wang, Y., Tian, T., & Cabane, E. (2017). Wood composites with wettability patterns prepared by controlled and selective chemical modification of a three-dimensional wood scaffold. ACS Sustainable Chemistry and Engineering, 5(12), 11686-11694. https://doi.org/10.1021/acssuschemeng.7b03104
Drying and pyrolysis of cellulose nanofibers from wood, bacteria, and algae for char application in oil absorption and dye adsorption
Štefelová, J., Slovák, V., Siqueira, G., Olsson, R. T., Tingaut, P., Zimmermann, T., & Sehaqui, H. (2017). Drying and pyrolysis of cellulose nanofibers from wood, bacteria, and algae for char application in oil absorption and dye adsorption. ACS Sustainable Chemistry and Engineering, 5(3), 2679-2692. https://doi.org/10.1021/acssuschemeng.6b03027
Functional cellulose nanofiber filters with enhanced flux for the removal of humic acid by adsorption
Sehaqui, H., Michen, B., Marty, E., Schaufelberger, L., & Zimmermann, T. (2016). Functional cellulose nanofiber filters with enhanced flux for the removal of humic acid by adsorption. ACS Sustainable Chemistry and Engineering, 4(9), 4582-4590. https://doi.org/10.1021/acssuschemeng.6b00698
Facile one-pot synthesis of mechanically robust biopolymer–silica nanocomposite aerogel by cogelation of silicic acid with chitosan in aqueous media
Zhao, S., Malfait, W. J., Jeong, E., Fischer, B., Zhang, Y., Xu, H., … Koebel, M. M. (2016). Facile one-pot synthesis of mechanically robust biopolymer–silica nanocomposite aerogel by cogelation of silicic acid with chitosan in aqueous media. ACS Sustainable Chemistry and Engineering, 4(10), 5674-5683. https://doi.org/10.1021/acssuschemeng.6b01574
Life cycle assessment of a new technology to extract, functionalize and orient cellulose nanofibers from food waste
Piccinno, F., Hischier, R., Seeger, S., & Som, C. (2015). Life cycle assessment of a new technology to extract, functionalize and orient cellulose nanofibers from food waste. ACS Sustainable Chemistry and Engineering, 3(6), 1047-1055. https://doi.org/10.1021/acssuschemeng.5b00209
Microwave-assisted nonaqueous sol–gel synthesis: from Al:ZnO nanoparticles to transparent conducting films
Luo, L., Rossell, M. D., Xie, D., Erni, R., & Niederberger, M. (2013). Microwave-assisted nonaqueous sol–gel synthesis: from Al:ZnO nanoparticles to transparent conducting films. ACS Sustainable Chemistry and Engineering, 1, 152-160. https://doi.org/10.1021/sc300073d