| Navigating the carbon maze: a roadmap to effective carbon conductive networks for lithium-ion batteries
Baumgärtner, J. F., Kravchyk, K. V., & Kovalenko, M. V. (2024). Navigating the carbon maze: a roadmap to effective carbon conductive networks for lithium-ion batteries. Advanced Energy Materials, 2400499 (29 pp.). https://doi.org/10.1002/aenm.202400499 |
| Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies
Bornschlegl, A. J., Lichtenegger, M. F., Luber, L., Lampe, C., Bodnarchuk, M. I., Kovalenko, M. V., & Urban, A. S. (2024). Dark-Bright exciton splitting dominates low-temperature diffusion in halide perovskite nanocrystal assemblies. Advanced Energy Materials, 14(10), 2303312 (10 pp.). https://doi.org/10.1002/aenm.202303312 |
| Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method
Guesnay, Q., Sahli, F., Artuk, K., Turkay, D., Kuba, A. G., Mrkyvkova, N., … Wolff, C. M. (2024). Pizza oven processing of organohalide perovskites (POPOP): a simple, versatile and efficient vapor deposition method. Advanced Energy Materials, 14(10), 2303423 (11 pp.). https://doi.org/10.1002/aenm.202303423 |
| Operando tracking the interactions between CoO<sub>x</sub> and CeO<sub>2</sub> during oxygen evolution reaction
Huang, J., Hales, N., Clark, A. H., Yüzbasi, N. S., Borca, C. N., Huthwelker, T., … Fabbri, E. (2024). Operando tracking the interactions between CoOx and CeO2 during oxygen evolution reaction. Advanced Energy Materials, 14(11), 2303529 (10 pp.). https://doi.org/10.1002/aenm.202303529 |
| Enhanced efficiency and stability of wide-bandgap perovskite solar cells via molecular modification with piperazinium salt
Luo, Y., Zhu, J., Yin, X., Jiao, W., Gao, Z., Xu, Y., … Zhao, D. (2024). Enhanced efficiency and stability of wide-bandgap perovskite solar cells via molecular modification with piperazinium salt. Advanced Energy Materials, 14(25), 2304429 (10 pp.). https://doi.org/10.1002/aenm.202304429 |
| Intermediate-stage sintered LLZO scaffolds for Li-garnet solid-state batteries
Okur, F., Zhang, H., Karabay, D. T., Muench, K., Parrilli, A., Neels, A., … Kovalenko, M. V. (2023). Intermediate-stage sintered LLZO scaffolds for Li-garnet solid-state batteries. Advanced Energy Materials, 13(15), 2203509 (9 pp.). https://doi.org/10.1002/aenm.202203509 |
| Mismatch of quasi–fermi level splitting and V<sub>oc</sub> in perovskite solar cells
Warby, J., Shah, S., Thiesbrummel, J., Gutierrez-Partida, E., Lai, H., Alebachew, B., … Stolterfoht, M. (2023). Mismatch of quasi–fermi level splitting and Voc in perovskite solar cells. Advanced Energy Materials, 13(48), 2303135 (12 pp.). https://doi.org/10.1002/aenm.202303135 |
| Unlocking stable multi-electron cycling in NMC811 thin-films between 1.5 – 4.7 V
Aribia, A., Sastre, J., Chen, X., Futscher, M. H., Rumpel, M., Priebe, A., … Romanyuk, Y. E. (2022). Unlocking stable multi-electron cycling in NMC811 thin-films between 1.5 – 4.7 V. Advanced Energy Materials, 12(40), 2201750 (8 pp.). https://doi.org/10.1002/aenm.202201750 |
| Optimizing the proton conductivity with the isokinetic temperature in perovskite-type proton conductors according to Meyer–Neldel rule
Du, P., Li, N., Ling, X., Fan, Z., Braun, A., Yang, W., … Yelon, A. (2022). Optimizing the proton conductivity with the isokinetic temperature in perovskite-type proton conductors according to Meyer–Neldel rule. Advanced Energy Materials, 12(5), 2102939 (8 pp.). https://doi.org/10.1002/aenm.202102939 |
| A polymerized‐ionic‐liquid‐based polymer electrolyte with high oxidative stability for 4 and 5 V class solid‐state lithium metal batteries
Fu, C., Homann, G., Grissa, R., Rentsch, D., Zhao, W., Gouveia, T., … Battaglia, C. (2022). A polymerized‐ionic‐liquid‐based polymer electrolyte with high oxidative stability for 4 and 5 V class solid‐state lithium metal batteries. Advanced Energy Materials, 12(27), 2200412 (10 pp.). https://doi.org/10.1002/aenm.202200412 |
| Amphiphilic polymer co-network: a versatile matrix for tailoring the photonic energy transfer in wearable energy harvesting devices
Huang, C. S., Yakunin, S., Avaro, J., Kang, X., Bodnarchuk, M. I., Liebi, M., … Boesel, L. F. (2022). Amphiphilic polymer co-network: a versatile matrix for tailoring the photonic energy transfer in wearable energy harvesting devices. Advanced Energy Materials, 12(18), 2200441 (10 pp.). https://doi.org/10.1002/aenm.202200441 |
| Selective borohydride oxidation reaction on nickel catalyst with anion and cation exchange ionomer for high-performance direct borohydride fuel cells
Ko, Y., Lombardo, L., Li, M., Pham, T. H. M., Yang, H., & Züttel, A. (2022). Selective borohydride oxidation reaction on nickel catalyst with anion and cation exchange ionomer for high-performance direct borohydride fuel cells. Advanced Energy Materials, 12(16), 2103539 (11 pp.). https://doi.org/10.1002/aenm.202103539 |
| High-performance flexible all-perovskite tandem solar cells with reduced V<sub>OC</sub>-deficit in wide-bandgap subcell
Lai, H., Luo, J., Zwirner, Y., Olthof, S., Wieczorek, A., Ye, F., … Fu, F. (2022). High-performance flexible all-perovskite tandem solar cells with reduced VOC-deficit in wide-bandgap subcell. Advanced Energy Materials, 12(45), 2202438 (12 pp.). https://doi.org/10.1002/aenm.202202438 |
| Charge carrier lifetime fluctuations and performance evaluation of Cu(In,Ga)Se<sub>2</sub> absorbers via time-resolved-photoluminescence microscopy
Ochoa, M., Yang, S. C., Nishiwaki, S., Tiwari, A. N., & Carron, R. (2022). Charge carrier lifetime fluctuations and performance evaluation of Cu(In,Ga)Se2 absorbers via time-resolved-photoluminescence microscopy. Advanced Energy Materials, 12(3), 2102800 (12 pp.). https://doi.org/10.1002/aenm.202102800 |
| Enhanced electrocatalytic CO<sub>2</sub> reduction to C<sub>2+</sub> products by adjusting the local reaction environment with polymer binders
Pham, T. H. M., Zhang, J., Li, M., Shen, T. H., Ko, Y., Tileli, V., … Züttel, A. (2022). Enhanced electrocatalytic CO2 reduction to C2+ products by adjusting the local reaction environment with polymer binders. Advanced Energy Materials, 12(9), 2103663 (10 pp.). https://doi.org/10.1002/aenm.202103663 |
| Insights from transient absorption spectroscopy into electron dynamics along the Ga-Gradient in Cu(In,Ga)Se<sub>2</sub> solar cells
Chang, Y. H., Carron, R., Ochoa, M., Bozal-Ginesta, C., Tiwari, A. N., Durrant, J. R., & Steier, L. (2021). Insights from transient absorption spectroscopy into electron dynamics along the Ga-Gradient in Cu(In,Ga)Se2 solar cells. Advanced Energy Materials, 11(8), 2003446 (10 pp.). https://doi.org/10.1002/aenm.202003446 |
| Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells
Chen, Q., Luo, J., He, R., Lai, H., Ren, S., Jiang, Y., … Zhao, D. (2021). Unveiling roles of tin fluoride additives in high-efficiency low-bandgap mixed tin-lead perovskite solar cells. Advanced Energy Materials, 11(29), 2101045 (10 pp.). https://doi.org/10.1002/aenm.202101045 |
| Building a better Li‐garnet solid electrolyte/metallic Li interface with antimony
Dubey, R., Sastre, J., Cancellieri, C., Okur, F., Forster, A., Pompizii, L., … Kravchyk, K. V. (2021). Building a better Li‐garnet solid electrolyte/metallic Li interface with antimony. Advanced Energy Materials, 11(39), 2102086 (12 pp.). https://doi.org/10.1002/aenm.202102086 |
| Reversible phase transformations in novel Ce-substituted perovskite oxide composites for solar thermochemical redox splitting of CO<sub>2</sub>
Naik, J. M., Ritter, C., Bulfin, B., Steinfeld, A., Erni, R., & Patzke, G. R. (2021). Reversible phase transformations in novel Ce-substituted perovskite oxide composites for solar thermochemical redox splitting of CO2. Advanced Energy Materials, 11(16), 2003532 (15 pp.). https://doi.org/10.1002/aenm.202003532 |
| Anion selection criteria for water-in-salt electrolytes
Reber, D., Grissa, R., Becker, M., Kühnel, R. S., & Battaglia, C. (2021). Anion selection criteria for water-in-salt electrolytes. Advanced Energy Materials, 11(5), 2002913 (10 pp.). https://doi.org/10.1002/aenm.202002913 |