Active Filters

  • (-) Journal = Advanced Engineering Materials
Search Results 1 - 20 of 81

Pages

  • RSS Feed
Select Page
Digital methods for the fatigue assessment of engineering steels
Fliegener, S., Rosenberger, J., Luke, M., Domínguez, J. M., Francisco Morgado, J., Kobialka, H. U., … Tlatlik, J. (2024). Digital methods for the fatigue assessment of engineering steels. Advanced Engineering Materials. https://doi.org/10.1002/adem.202400992
Soft chemiresistive sensing shields soft robotic actuators from mechanical degradation due to critical solvent exposure
Georgopoulou, A., Eckey, L. M., & Clemens, F. (2024). Soft chemiresistive sensing shields soft robotic actuators from mechanical degradation due to critical solvent exposure. Advanced Engineering Materials, 26(10), 2301723 (10 pp.). https://doi.org/10.1002/adem.202301723
Additive manufacturing of fiber-reinforced zirconia-toughened alumina ceramic matrix composites by material extrusion-based technology
Hadian, A., Duckek, J., Parrilli, A., Liersch, A., & Clemens, F. (2024). Additive manufacturing of fiber-reinforced zirconia-toughened alumina ceramic matrix composites by material extrusion-based technology. Advanced Engineering Materials, 2302158 (13 pp.). https://doi.org/10.1002/adem.202302158
Electrospun (K,Na)NbO<sub>3</sub> piezoceramic fibers for self-powered tactile sensing application
Ichangi, A., Derichsweiler, C., Mathur, S., & Clemens, F. (2024). Electrospun (K,Na)NbO3 piezoceramic fibers for self-powered tactile sensing application. Advanced Engineering Materials, 26(1), 230166 (10 pp.). https://doi.org/10.1002/adem.202301066
Evaluation of interface and residual strain of NiTi layer deposited on NiTiX substrate by laser powder bed fusion
Memarian, M., Mohri, M., Golrang, M., Leinenbach, C., Ferretto, I., Ghafoori, E., & Nili‐Ahmadabadi, M. (2024). Evaluation of interface and residual strain of NiTi layer deposited on NiTiX substrate by laser powder bed fusion. Advanced Engineering Materials, 26(11), 2400002 (13 pp.). https://doi.org/10.1002/adem.202400002
Unraveling the highly plastic behavior of ALD‐aluminum oxide encapsulations by small‐scale tensile testing
Vogl, L. M., Schweizer, P., Minor, A. M., Michler, J., & Utke, I. (2024). Unraveling the highly plastic behavior of ALD‐aluminum oxide encapsulations by small‐scale tensile testing. Advanced Engineering Materials, 26(8), 2302220 (7 pp.). https://doi.org/10.1002/adem.202302220
Tensile response characterization and constitutive modeling of LPBF Ti6Al4V thin struts
Hosseini, E., Robmann, S., Lüthi, T., Affolter, C., & Mazza, E. (2023). Tensile response characterization and constitutive modeling of LPBF Ti6Al4V thin struts. Advanced Engineering Materials, 25, 2201135 (10 pp.). https://doi.org/10.1002/adem.202201135
Electromechanical behavior of Al/Al<sub>2</sub>O<sub>3</sub> multilayers on flexible substrates: insights from in situ film stress and resistance measurements
Putz, B., Edwards, T. E. J., Huszar, E., Gruber, P. A., Gradwohl, K. P., Kreiml, P., … Michler, J. (2023). Electromechanical behavior of Al/Al2O3 multilayers on flexible substrates: insights from in situ film stress and resistance measurements. Advanced Engineering Materials, 25(2), 2200951 (15 pp.). https://doi.org/10.1002/adem.202200951
High-temperature creep properties of an additively manufactured Y<sub>2</sub>O<sub>3</sub> oxide dispersion-strengthened Ni–Cr–Al–Ti γ/γ’ superalloy
Kenel, C., De Luca, A., Leinenbach, C., & Dunand, D. C. (2022). High-temperature creep properties of an additively manufactured Y2O3 oxide dispersion-strengthened Ni–Cr–Al–Ti γ/γ’ superalloy. Advanced Engineering Materials, 24(12), 2200753 (10 pp.). https://doi.org/10.1002/adem.202200753
Tomographic volumetric additive manufacturing of silicon oxycarbide ceramics
Kollep, M., Konstantinou, G., Madrid-Wolff, J., Boniface, A., Hagelüken, L., Sasikumar, P. V. W., … Moser, C. (2022). Tomographic volumetric additive manufacturing of silicon oxycarbide ceramics. Advanced Engineering Materials, 24(7), 2101345 (10 pp.). https://doi.org/10.1002/adem.202101345
Nanoscale 3D electroforming by template pyrolysis
Gunderson, C., Rohbeck, N., Tranchant, M., Michler, J., & Philippe, L. (2021). Nanoscale 3D electroforming by template pyrolysis. Advanced Engineering Materials, 23(5), 2001293 (7 pp.). https://doi.org/10.1002/adem.202001293
Aerogel spring-back correlates with strain recovery: effect of silica concentration and aging
Sivaraman, D., Zhao, S., Iswar, S., Lattuada, M., & Malfait, W. J. (2021). Aerogel spring-back correlates with strain recovery: effect of silica concentration and aging. Advanced Engineering Materials, 23(10), 2100376 (12 pp.). https://doi.org/10.1002/adem.202100376
Mechanical anisotropy investigated in the complex SLM-processed Sc- and Zr-modified Al–Mg alloy microstructure
Best, J. P., Maeder, X., Michler, J., & Spierings, A. B. (2019). Mechanical anisotropy investigated in the complex SLM-processed Sc- and Zr-modified Al–Mg alloy microstructure. Advanced Engineering Materials, 21(3), 1801113 (6 pp.). https://doi.org/10.1002/adem.201801113
An innovative selective laser melting process for hematite-doped aluminum oxide
Florio, K., Pfeiffer, S., Makowska, M., Casati, N., Verga, F., Graule, T., … Wegener, K. (2019). An innovative selective laser melting process for hematite-doped aluminum oxide. Advanced Engineering Materials, 21(6), 1801352 (10 pp.). https://doi.org/10.1002/adem.201801352
Iron oxide doped spray dried aluminum oxide granules for selective laser sintering and melting of ceramic parts
Pfeiffer, S., Florio, K., Makowska, M., Ferreira Sanchez, D., Van Swygenhoven, H., Aneziris, C. G., … Graule, T. (2019). Iron oxide doped spray dried aluminum oxide granules for selective laser sintering and melting of ceramic parts. Advanced Engineering Materials, 21(6), 1801351 (14 pp.). https://doi.org/10.1002/adem.201801351
Solid state processing of aluminum matrix composites reinforced with nanoparticulate materials
Leparoux, M., Kollo, L., Kwon, H., Kallip, K., Babu, N. K., AlOgab, K., & Talari, M. K. (2018). Solid state processing of aluminum matrix composites reinforced with nanoparticulate materials. Advanced Engineering Materials, 20(11), 1800401 (18 pp.). https://doi.org/10.1002/adem.201800401
Phase evolution during high energy cube milling of Ti–6Al–4V–0.5 vol% TiC powders using heptane and tin as process control agents (PCAs)
Kishore Babu, N., Kallip, K., Leparoux, M., Talari, M. K., AlOgab, K. A., & Alqahtani, N. M. (2017). Phase evolution during high energy cube milling of Ti–6Al–4V–0.5 vol% TiC powders using heptane and tin as process control agents (PCAs). Advanced Engineering Materials, 19(2), 1600662 (6 pp.). https://doi.org/10.1002/adem.201600662
Platinum thin-film electrodes prepared by a cost-effective chemical vapor deposition technique
Schlupp, M. V. F., Wehrle, M. M., Kunze, K., Remhof, A., & Vogt, U. F. (2016). Platinum thin-film electrodes prepared by a cost-effective chemical vapor deposition technique. Advanced Engineering Materials, 18(7), 1200-1207. https://doi.org/10.1002/adem.201500636
Microstructure, mechanical, and impression creep properties of AlMg5–0.5 vol% Al<SUB>2</SUB>O<SUB>3</SUB> nanocomposites
Talari, M. K., Babu, N. K., Kallip, K., Leparoux, M., Koller, R. E., AlOgab, K. A., & Maeder, X. (2016). Microstructure, mechanical, and impression creep properties of AlMg5–0.5 vol% Al2O3 nanocomposites. Advanced Engineering Materials, 18(11), 1958-1966. https://doi.org/10.1002/adem.201600301
Intermetallic layer growth kinetics in Sn-Ag-Cu system using diffusion multiple and reflow techniques
Pawełkiewicz, M., Danielewski, M., & Janczak-Rusch, J. (2015). Intermetallic layer growth kinetics in Sn-Ag-Cu system using diffusion multiple and reflow techniques. Advanced Engineering Materials, 17(4), 512-522. https://doi.org/10.1002/adem.201400226
 

Pages