Active Filters

  • (-) Journal = Applied Acoustics
  • (-) Keywords ≠ cross-laminated timber
Search Results 1 - 17 of 17
  • RSS Feed
Select Page
Development and application of a semantic differential for perception-based optimization of wind turbine and other broadband sounds
Schäffer, B., Pieren, R., Brink, M., & Schlittmeier, S. J. (2023). Development and application of a semantic differential for perception-based optimization of wind turbine and other broadband sounds. Applied Acoustics, 211, 109493 (17 pp.). https://doi.org/10.1016/j.apacoust.2023.109493
GIR dataset: a geometry and real impulse response dataset for machine learning research in acoustics
Xydis, A., Perraudin, N., Rust, R., Heutschi, K., Casas, G., Grognuz, O. R., … Perez-Cruz, F. (2023). GIR dataset: a geometry and real impulse response dataset for machine learning research in acoustics. Applied Acoustics, 208, 109333 (12 pp.). https://doi.org/10.1016/j.apacoust.2023.109333
Characterisation of the acoustic impedance of vegetated roofs with a multiple-geometry approach
Liu, C., Georgiou, F., & Hornikx, M. (2022). Characterisation of the acoustic impedance of vegetated roofs with a multiple-geometry approach. Applied Acoustics, 199, 108997 (13 pp.). https://doi.org/10.1016/j.apacoust.2022.108997
Auralization of a car pass-by inside an urban canyon using measured impulse responses
Georgiou, F., Hornikx, M., & Kohlrausch, A. (2021). Auralization of a car pass-by inside an urban canyon using measured impulse responses. Applied Acoustics, 183, 108291 (8 pp.). https://doi.org/10.1016/j.apacoust.2021.108291
Damping of post-impact vibrations
Muster, M., Hameed, A., Wood, D., Appleby-Thomas, G., & Wasmer, K. (2019). Damping of post-impact vibrations. Applied Acoustics, 156, 427-433. https://doi.org/10.1016/j.apacoust.2019.07.040
Auralization of railway noise: emission synthesis of rolling and impact noise
Pieren, R., Heutschi, K., Wunderli, J. M., Snellen, M., & Simons, D. G. (2017). Auralization of railway noise: emission synthesis of rolling and impact noise. Applied Acoustics, 127, 34-45. https://doi.org/10.1016/j.apacoust.2017.05.026
Prediction of airborne sound transmission across a timber–concrete composite floor using Statistical Energy Analysis
Churchill, C., & Hopkins, C. (2016). Prediction of airborne sound transmission across a timber–concrete composite floor using Statistical Energy Analysis. Applied Acoustics, 110, 145-149. https://doi.org/10.1016/j.apacoust.2016.03.031
Uncertainty determination of in situ airborne sound insulation measurements
Machimbarrena, M., Rodrigues A. Monteiro, C., Pedersoli, S., Johansson, R., & Smith, S. (2015). Uncertainty determination of in situ airborne sound insulation measurements. Applied Acoustics, 89, 199-210. https://doi.org/10.1016/j.apacoust.2014.09.018
Predicting sound absorption coefficients of lightweight multilayer curtains using the equivalent circuit method
Pieren, R., & Heutschi, K. (2015). Predicting sound absorption coefficients of lightweight multilayer curtains using the equivalent circuit method. Applied Acoustics, 92, 27-41. https://doi.org/10.1016/j.apacoust.2015.01.003
Estimating the model-specific uncertainty of aircraft noise calculations
Schäffer, B., Plüss, S., & Thomann, G. (2014). Estimating the model-specific uncertainty of aircraft noise calculations. Applied Acoustics, 84, 58-72. https://doi.org/10.1016/j.apacoust.2014.01.009
Experimental study for control of sound transmission through double glazed window using optimally tuned Helmholtz resonators
Mao, Q., & Pietrzko, S. (2010). Experimental study for control of sound transmission through double glazed window using optimally tuned Helmholtz resonators. Applied Acoustics, 71(1), 32-38. https://doi.org/10.1016/j.apacoust.2009.07.007
Sound propagation in railway line cuttings
Heutschi, K. (2008). Sound propagation in railway line cuttings. Applied Acoustics, 69(12), 1189-1194. https://doi.org/10.1016/j.apacoust.2007.11.006
A standardised test environment to compare aircraft noise calculation programs
Krebs, W., Balmer, M., & Lobsiger, E. (2008). A standardised test environment to compare aircraft noise calculation programs. Applied Acoustics, 69(11), 1096-1100. https://doi.org/10.1016/j.apacoust.2007.08.006
Simulation of outdoor sound propagation with a transmission line matrix method
Hofmann, J., & Heutschi, K. (2007). Simulation of outdoor sound propagation with a transmission line matrix method. Applied Acoustics, 68(2), 158-172. https://doi.org/10.1016/j.apacoust.2005.10.006
Outdoor sound propagation measurements using an MLS technique
Heutschi, K., & Rosenheck, A. (1997). Outdoor sound propagation measurements using an MLS technique. Applied Acoustics, 51(1), 13-32. https://doi.org/10.1016/S0003-682x(96)00058-8
A simple method to evaluate the increase of traffic noise emission level due to buildings, for a long straight street
Heutschi, K. (1995). A simple method to evaluate the increase of traffic noise emission level due to buildings, for a long straight street. Applied Acoustics, 44(3), 259-274. https://doi.org/10.1016/0003-682x(94)00027-S
Prediction of A-weighted aircraft noise based on measured directivity patterns
Pietrzko, S., & Hofmann, R. F. (1988). Prediction of A-weighted aircraft noise based on measured directivity patterns. Applied Acoustics, 23(1), 29-44. https://doi.org/10.1016/0003-682x(88)90079-5