Active Filters

  • (-) Journal = Applied Thermal Engineering
  • (-) Keywords ≠ energy flexibility
Search Results 1 - 10 of 10
  • RSS Feed
Select Page
Three influential factors on colloidal nanoparticle deposition for heat conduction enhancement in 3D chip stacks
Qin, F., Zhao, J., Kang, Q., Brunschwiler, T., Carmeliet, J., & Derome, D. (2021). Three influential factors on colloidal nanoparticle deposition for heat conduction enhancement in 3D chip stacks. Applied Thermal Engineering, 187, 116585 (16 pp.). https://doi.org/10.1016/j.applthermaleng.2021.116585
Development of a sweating thermal skin simulant for heat transfer evaluation of clothed human body under radiant heat hazard
Guan, M., Zhang, H., Li, J., Spano, F., Camenzind, M., Annaheim, S., & Rossi, R. M. (2020). Development of a sweating thermal skin simulant for heat transfer evaluation of clothed human body under radiant heat hazard. Applied Thermal Engineering, 166, 114642 (9 pp.). https://doi.org/10.1016/j.applthermaleng.2019.114642
Insights in convective drying of fruit by coupled modeling of fruit drying, deformation, quality evolution and convective exchange with the airflow
Defraeye, T., & Radu, A. (2018). Insights in convective drying of fruit by coupled modeling of fruit drying, deformation, quality evolution and convective exchange with the airflow. Applied Thermal Engineering, 129, 1026-1038. https://doi.org/10.1016/j.applthermaleng.2017.10.082
Identifying heterogeneities in cooling and quality evolution for a pallet of packed fresh fruit by using virtual cold chains
Wu, W., & Defraeye, T. (2018). Identifying heterogeneities in cooling and quality evolution for a pallet of packed fresh fruit by using virtual cold chains. Applied Thermal Engineering, 133, 407-417. https://doi.org/10.1016/j.applthermaleng.2017.11.049
When to stop drying fruit: insights from hygrothermal modelling
Defraeye, T. (2017). When to stop drying fruit: insights from hygrothermal modelling. Applied Thermal Engineering, 110, 1128-1136. https://doi.org/10.1016/j.applthermaleng.2016.08.219
Effects of clothing and fibres properties on the heat and mass transport, for different body heat/sweat releases
Neves, S. F., Campos, J. B. L. M., & Mayor, T. S. (2017). Effects of clothing and fibres properties on the heat and mass transport, for different body heat/sweat releases. Applied Thermal Engineering, 117, 109-121. https://doi.org/10.1016/j.applthermaleng.2017.01.074
Advances in the optimisation of apparel heating products: a numerical approach to study heat transport through a blanket with an embedded smart heating system
Neves, S. F., Couto, S., Campos, J. B. L. M., & Mayor, T. S. (2015). Advances in the optimisation of apparel heating products: a numerical approach to study heat transport through a blanket with an embedded smart heating system. Applied Thermal Engineering, 87, 491-498. https://doi.org/10.1016/j.applthermaleng.2015.05.035
Heat protection by different phase change materials
Bühler, M., Popa, A. M., Scherer, L. J., Lehmeier, F. K. S., & Rossi, R. M. (2013). Heat protection by different phase change materials. Applied Thermal Engineering, 54(2), 359-364. https://doi.org/10.1016/j.applthermaleng.2013.02.025
An empirical validation of modeling solar gain through a glazing unit with external and internal shading screens
Loutzenhiser, P. G., Manz, H., Felsmann, C., Strachan, P. A., & Maxwell, G. M. (2007). An empirical validation of modeling solar gain through a glazing unit with external and internal shading screens. Applied Thermal Engineering, 27(2-3), 528-538. https://doi.org/10.1016/j.applthermaleng.2006.06.016
Thermodynamics of moist air: contribution to error estimates
Egolf, P. W., Frei, B., & Furter, R. (2000). Thermodynamics of moist air: contribution to error estimates. Applied Thermal Engineering, 20(1), 1-19. https://doi.org/10.1016/S1359-4311(99)00008-3