Active Filters

  • (-) Journal = Biomacromolecules
Search Results 1 - 20 of 33
Select Page
Customized fading scaffolds: strong polyorthoester networks via thiol-ene cross-linking for cytocompatible surface-eroding materials in 3D printing
Herwig, G., Pérez-Madrigal, M. M., & Dove, A. P. (2021). Customized fading scaffolds: strong polyorthoester networks via thiol-ene cross-linking for cytocompatible surface-eroding materials in 3D printing. Biomacromolecules, 22(4), 1472-1483. https://doi.org/10.1021/acs.biomac.0c01668
Tissue inhibitor of metalloproteinase (TIMP) peptidomimetic as an adjunctive therapy for infectious keratitis
Neidhart, B., Kowalska, M., Valentin, J. D. P., Gall, F. M., Ren, Q., Riedl, R., … Rottmar, M. (2021). Tissue inhibitor of metalloproteinase (TIMP) peptidomimetic as an adjunctive therapy for infectious keratitis. Biomacromolecules, 22(2), 629-639. https://doi.org/10.1021/acs.biomac.0c01473
Assembly of cellulose nanocrystal-lysozyme composite films with varied lysozyme morphology
De France, K. J., Kummer, N., Ren, Q., Campioni, S., & Nyström, G. (2020). Assembly of cellulose nanocrystal-lysozyme composite films with varied lysozyme morphology. Biomacromolecules, 21(12), 5139-5146. https://doi.org/10.1021/acs.biomac.0c01267
Nanoscale chemical features of the natural fibrous material wood
Gusenbauer, C., Jakob, D. S., Xu, X. G., Vezenov, D. V., Cabane, É., & Konnerth, J. (2020). Nanoscale chemical features of the natural fibrous material wood. Biomacromolecules, 21(10), 4244-4252. https://doi.org/10.1021/acs.biomac.0c01028
Nanostructural properties and twist periodicity of cellulose nanofibrils with variable charge density
Arcari, M., Zuccarella, E., Axelrod, R., Adamcik, J., Sánchez-Ferrer, A., Mezzenga, R., & Nyström, G. (2019). Nanostructural properties and twist periodicity of cellulose nanofibrils with variable charge density. Biomacromolecules, 20(3), 1288-1296. https://doi.org/10.1021/acs.biomac.8b01706
Designing cellulose nanofibrils for stabilization of fluid interfaces
Bertsch, P., Arcari, M., Geue, T., Mezzenga, R., Nyström, G., & Fischer, P. (2019). Designing cellulose nanofibrils for stabilization of fluid interfaces. Biomacromolecules, 20(12), 4574-4580. https://doi.org/10.1021/acs.biomac.9b01384
Formation of nanofibrous structure in biopolymer aerogel during supercritical CO<sub>2</sub> processing: the case of chitosan aerogel
Takeshita, S., Sadeghpour, A., Malfait, W. J., Konishi, A., Otake, K., & Yoda, S. (2019). Formation of nanofibrous structure in biopolymer aerogel during supercritical CO2 processing: the case of chitosan aerogel. Biomacromolecules, 20(5), 2051-2057. https://doi.org/10.1021/acs.biomac.9b00246
Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs
Trachsel, L., Johnbosco, C., Lang, T., Benetti, E. M., & Zenobi-Wong, M. (2019). Double-network hydrogels including enzymatically crosslinked poly-(2-alkyl-2-oxazoline)s for 3D bioprinting of cartilage-engineering constructs. Biomacromolecules, 20, 4502-4511. https://doi.org/10.1021/acs.biomac.9b01266
Solvent-controlled spatial distribution of SI-AGET-ATRP grafted polymers in lignocellulosic materials
Vidiella del Blanco, M., Gomez, V., Keplinger, T., Cabane, E., & Grafulha Morales, L. F. (2019). Solvent-controlled spatial distribution of SI-AGET-ATRP grafted polymers in lignocellulosic materials. Biomacromolecules, 20(1), 336-346. https://doi.org/10.1021/acs.biomac.8b01393
Softwood lignin self-assembly for nanomaterial design
Salentinig, S., & Schubert, M. (2017). Softwood lignin self-assembly for nanomaterial design. Biomacromolecules, 18(8), 2649-2653. https://doi.org/10.1021/acs.biomac.7b00822
Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration
Sehaqui, H., Kulasinski, K., Pfenninger, N., Zimmermann, T., & Tingaut, P. (2017). Highly carboxylated cellulose nanofibers via succinic anhydride esterification of wheat fibers and facile mechanical disintegration. Biomacromolecules, 18(1), 242-248. https://doi.org/10.1021/acs.biomac.6b01548
Effect of surface charge on surface-initiated atom transfer radical polymerization from cellulose nanocrystals in aqueous media
Zoppe, J. O., Xu, X., Känel, C., Orsolini, P., Siqueira, G., Tingaut, P., … Klok, H. A. (2016). Effect of surface charge on surface-initiated atom transfer radical polymerization from cellulose nanocrystals in aqueous media. Biomacromolecules, 17(4), 1404-1413. https://doi.org/10.1021/acs.biomac.6b00011
Water adsorption in wood microfibril-hemicellulose system: role of the crystalline–amorphous interface
Kulasinski, K., Guyer, R., Derome, D., & Carmeliet, J. (2015). Water adsorption in wood microfibril-hemicellulose system: role of the crystalline–amorphous interface. Biomacromolecules, 16(9), 2972-2978. https://doi.org/10.1021/acs.biomac.5b00878
Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions
Malho, J. M., Ouellet-Plamondon, C., Rüggeberg, M., Laaksonen, P., Ikkala, O., Burgert, I., & Linder, M. B. (2015). Enhanced plastic deformations of nanofibrillated cellulose film by adsorbed moisture and protein-mediated interactions. Biomacromolecules, 16(1), 311-318. https://doi.org/10.1021/bm501514w
Porous, water-resistant multifilament yarn spun from gelatin
Stoessel, P. R., Krebs, U., Hufenus, R., Halbeisen, M., Zeltner, M., Grass, R. N., & Stark, W. J. (2015). Porous, water-resistant multifilament yarn spun from gelatin. Biomacromolecules, 16(7), 1997-2005. https://doi.org/10.1021/acs.biomac.5b00424
TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules
Weishaupt, R., Siqueira, G., Schubert, M., Tingaut, P., Maniura-Weber, K., Zimmermann, T., … Ihssen, J. (2015). TEMPO-oxidized nanofibrillated cellulose as a high density carrier for bioactive molecules. Biomacromolecules, 16(11), 3640-3650. https://doi.org/10.1021/acs.biomac.5b01100
Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading
Osorio-Madrazo, A., Eder, M., Rueggeberg, M., Pandey, J. K., Harrington, M. J., Nishiyama, Y., … Burgert, I. (2012). Reorientation of cellulose nanowhiskers in agarose hydrogels under tensile loading. Biomacromolecules, 13(3), 850-856. https://doi.org/10.1021/bm201764y
Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning
Sehaqui, H., Morimune, S., Nishino, T., & Berglund, L. A. (2012). Stretchable and strong cellulose nanopaper structures based on polymer-coated nanofiber networks: an alternative to nonwoven porous membranes from electrospinning. Biomacromolecules, 13(11), 3661-3667. https://doi.org/10.1021/bm301105s
Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates
Sèbe, G., Ham-Pichavant, F., Ibarboure, E., Koffi, A. L. C., & Tingaut, P. (2012). Supramolecular structure characterization of cellulose II nanowhiskers produced by acid hydrolysis of cellulose I substrates. Biomacromolecules, 13(2), 570-578. https://doi.org/10.1021/bm201777j
Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture
Clift, M. J. D., Foster, E. J., Vanhecke, D., Studer, D., Wick, P., Gehr, P., … Weder, C. (2011). Investigating the interaction of cellulose nanofibers derived from cotton with a sophisticated 3D human lung cell coculture. Biomacromolecules, 12(10), 3666-3673. https://doi.org/10.1021/bm200865j